(499) 267-83-08

в рабочие дни с 11:00 до 19:00

(967) 289-13-39

ежедневно с 9:00 до 23:00

Записаться

Появилась возможность записаться он-лайн!

Этапы обучения

Теория и практическое обучение вождению на механике или автомате, индивидуальный подход, никаких дополнительных затрат.


Тормозная система камаз 5320 схема


Пять контуров тормозной системы автомобилей КамАЗ 5320 (4310)

Главная › Устройство

Разделение тормозной системы автомобилей КамАЗ 5320 (4310) позволяет действовать каждому контуру независимо, что важно при возникновении неисправности.

Содержание статьи:

  • 1 Контур I
  • 2 Контур II
  • 3 Контур III
  • 4 Контур IV
  • 5 Контур V

Контур I

Это контур передней оси состоит из ресивера вместимостью 20 л с датчиком падения давления и краником, тройного защитного клапана, двухстрелочного манометра, клапана ограничения давления, клапана контрольного вывода, нижней секции тормозного крана, двух камер и прочих механизмов, шлангов и трубопроводов. Кроме того, в первый контур входит трубопровод от клапана тормозной системы прицепа до нижней секции крана.

Ниже на схеме ниже показано устройство тормозных систем автомобиля КамАЗ-4310. Для КамАЗ-5320 картинка немного ниже:

Схема пневмопривода тормозных систем автомобиля КамАЗ-4310

Контур II

Это контур тормозов задней тележки.

Устройство тормозов тележки автомобилей Камаз 5320 (4310) состоит из верхней секции тормозного крана, части тройного защитного клапана, ресиверов с общей вместимостью 40 л с датчиком давления и кранами слива конденсата, клапана контрольного вывода автоматического регулятора, двухстрелочного манометра, четырёх тормозных камер, тормозных механизмов промежуточного и заднего мостов тележки, шланга и трубопроводов.

В контур входит трубопровод от клапана управления тормозными механизмами до верхней секции тормозного крана.

Контур III

Это контур стояночной, запасной тормозных систем и комбинированного привода тормозных механизмов полуприцепа (прицепа). Он состоит из:

  • двойного защитного клапана,
  • двух ресиверов общей вместимостью 40 л, датчиком давления и краном слива конденсата,
  • двух клапанов контрольного вывода ручного тормозного крана,
  • ускорительного клапана,
  • четырёх пружинных энергоаккумуляторов тормозных камер с датчиком давления,
  • части двухмагистрального перепускного клапана,
  • клапана управления с двухпроводным приводом тормозной системы прицепа,
  • одинарного защитного клапана,
  • клапана управления тормозами прицепа с однопроводным приводом,
  • головки типа «А» однопроводного привода и двух головок «Палм» двухпроводного привода тормозов прицепа,
  • трёх разобщительных кранов трёх соединительных головок,
  • пневмоэлектрического датчика «стоп-сигнала»,
  • двухпроводного привода тормозов прицепа,
  • шлангов и трубопроводов.

Контур IV

Этот контур вспомогательной тормозной системы своего ресивера не имеет. Он состоит из пневматического крана, части двойного защитного клапана, двух цилиндров привода заслонок, пневмоэлектрического датчика, цилиндра привода рычага останова двигателя, трубопроводов и шлангов.

Схема пневмопривода тормозных систем автомобиля КамАЗ-5320

Контур V

Этот контур аварийного растормаживания не имеет исполнительных органов и своего ресивера.

Он состоит из части двухмагистрального перепускного клапана, пневматического крана, части тройного защитного клапана, соединяющих аппараты шлангов и трубопроводов.

Пневматические тормозные приводы автомобиля Камаз и прицепа соединяются тремя магистралями: магистралью двухпроводного привода, питающей магистралью и магистралью однопроводного привода. В питающей части тормозного привода моделей 53212 и 53213, для улучшения влагоотделения на участке «регулятор давления — компрессор», предусмотрен влагоотделитель, устанавливаемый в зоне интенсивного обдува на первой поперечине автомобиля. На всех моделях КамАЗ с такой же целью на участке «защитные клапаны – предохранитель» от замерзания защищает конденсационный ресивер ёмкостью 20 литров.

04.12.2014 Пять контуров тормозной системы автомобилей КамАЗ 5320 (4310) Ссылка на основную публикацию

Тормозная система на Камаз 5320 и 4310: вспомогательный тип

Камаз считается довольно габаритной машиной, которая может перевозить груз около 25 тонн. Поэтому остановить такое транспортное средство довольно сложно, но установленная на нее система торможения хорошо с этим справляется, если конечно она исправна. В сегодняшней статье мы более подробно обсудим тормозную систему автомобиля Камаз 5320 и 4310, а именно ответим на такие вопросы:

  • Что собой представляет камазовская тормозная система ЗИЛ 130?
  • Как устроена система торможения Камаз 5320 (4310);
  • Сколько тормозных систем установлено на авто марки Камаз 5320 (4310)?
  • Как функционирует тормозная система Камаз?
  • Основные неисправности камазовской тормозной системы ЗИЛ 130;
  • С чем могут быть связаны различные неисправности тормозной системы авто Камаз 5320 (4310)?
  • Диагностика тормозной системы ЗИЛ 130 на стенде;
  • Замена тормозной жидкости на авто марки Камаз 5320 (4310).

Основная информация

Главной задачей системы торможения является деформация скорости передвижения транспортного средства при помощи водителя или же электро-руководства. Вторичной задачей является задержка машины в неподвижном состоянии во время стоянок или кратких остановок. Противоположная сила остановки может образовываться самим двигателем от транспортного средства, механизмом, который отвечает за остановку колёс авто, электронным или гидравлическим замедляющим тормозом (обычно он находиться в самой трансмиссии). Для функционирования всех вышеперечисленных функций на транспортное средство устанавливают различные типы. На автомобили марки Камаз 5320 и 4310 устанавливаются сразу несколько тормозных систем. Следственно возникает вопрос, сколько же и всего?

  1. Рабочий тип. Данный вириант можно применять абсолютно на любой скорости транспортного средства в целях резкой остановки или же просто для снижения скорости. Также стоит упомянуть, что рабочий типа начинает свое действие сазу же после нажатия на педаль “тормоз”. Этот тип считается самым эффективным по сравнению с остальными типами.
  2. Запасной тип. Является вторым вариантом для экстренных случаев, когда основной тормозной блок отказывается работать.Запасные типы бывают двух вариаций: автономный тип и тип, который используется как функция.
  3. Стояночный тип. Является необходимой для удержания машины на протяжении определённого времени на месте. А значит, что с помощью стояночного типа исключается вариант с передвижением автом без ведома владельца.
  4. Вспомогательная. Вспомогательный тип используется на транспортах для передвижения, которым свойственна повышенная нагрузка на мост, для остановки на крутых спусках. Довольно часто происходит так, что функции этой системы остановки выполняются двигателем, на котором трубопровод перекрывается при помощи заслонки.

Также автомобили Камаз 5320 и 4310 оснащаются аварийной растормаживающей системой на стояночный тип тормозов, приводом тормозов прицепа, аварийной сигнализацией о функционировании системы торможения и системой контроля.

Камазовская система торможения ЗИЛ 130 оснащается такими основными механизмами и аппаратами:

  • Ресиверы;
  • Компрессор;
  • Пневматические цилиндры;
  • Тормозной механизм;
  • Тормозной кран;
  • Четырехконтурный защитный клапан;
  • Регулировочный рычаг;
  • Распределитель влаги;
  • Датчики;
  • Клапаны;
  • Регулятор давления;
  • Механизм вспомогательной системы торможения;
  • Автоматический регулятор сил торможения.

В чём заключается принцип действия?

Давайте рассмотрим принцип действия камазовской тормозящей системы ЗИЛ 130 на примере гидравлического рабочего блока. Во время натиска на педаль тормоза нагрузка переноситься на уилитель, который в свою очередь сосздает дополнительное давление на основной цилиндр. Поршни основного цилиндра собирают всю лишнюю жидкость в цилиндрах авто-колёс при помощи трубопровода. Поршень основного цилиндра собирает всю жидкость в цилиндрах автомобильных колёс с помощью трубопроводов. Причём в этот же момент поток жидкости переходит в привод. Благодаря поршням цилиндров автомобильных колёс происходит перемещение тормозящих колодок к дискам, или как их ещё называют барабанам.

После нажатия на педаль тормоза активируется давление жидкости, что как правило запускает механизм остановки и заставляет автомобиль остановиться образованием сил торможения контактируя с покрытием дороги. Причём чем больше будет давление на саму педаль, тем лучше и быстрее произойдёт остановка автомобильных колёс. Давление жидкости в момент остановки может достигать от десяти до пятнадцати мегапаскалей.

В момент окончания остановки педаль тормоза содействует с возвратной пружиной и в итоге педаль стает в неактивное положение. Также в обратное расположение переходит поршень основного цилиндра. Большинство частей пружин отходят от барабанов с помощью колодок. В это же время тормозная жидкость перетекает в главный цилиндр из цилиндра авто-колёс. Таким образом, проходит понижение давления камазовской системы торможения ЗИЛ 130. Эффективность камазовской системы торможения сильно увеличивается благодаря использованию устройств безопасности транспортного средства.

Неисправности системы торможения

Главной задачей проведения диагностики авто Камаз 5320 и 4310 считается обнаружение неисправности камазовской тормозной системы ЗИЛ 130, а также их устранение при минимальном использовании денежных средств. Кроме того, своевременное обнаружение неисправностей системы торможения позволит вам избежать больших денежных трат, потому как вы сможете предотвратить поломку. В специализированных центрах диагностика проводится на специальном стенде, но вы и сами можете её провести в домашних условиях. Для определения неисправности нужно внимательно относиться к своему транспортному средству. Итак, рассмотрим основные неисправности камазовской системы торможения ЗИЛ 130?

  1. Возникновение постороннего шума;
  2. Слышен скрип во время остановки транспортного средства;
  3. Заметно подтекание тормозной жидкости;
  4. Западает педаль тормоза;
  5. Заметно увеличился тормозной путь.

Как правило, все вышеперечисленные неисправности торможения авто Камаз 5320 и 4310 связаны с такими причинами:

  1. Нарушилась герметичность;
  2. Низкий уровень жидкости;
  3. Нерегулярное поведение замены жидкости;
  4. Сильно износились тормозные колодки.

Чаще всего причиной неполадок камазовской системы торможения ЗИЛ 130 является несвоевременная замена тормозной жидкости, а это может привести к полному отказу тормозов. Её нужно регулярно менять из-за того, что в момент использования она впитывает в себя всю влагу. Также может быть недостаточный уровень тормозной жидкости, так как она испаряется при закипании, которое происходит в момент остановки транспортного средства.

Вам понравилась статья? Она была полезной?

Похожие статьи:

Тормозная система КамАЗ -5320

По элементное диагностирование выполняют обычно перед ТО-2 с целью детального обследования технического состояния механизма и выявления: неисправностей и их причин.

Приремонтное диагностирование выполняется непосредственно в ходе ТО и ремонта с целью уточнения потребности в выполнении отдельных операций.

Привод системы аварийного растормаживания сдублирован: кроме пневматического привода имеются винты аварийного оттормаживания в каждом из четырех пружинных энергоаккумуляторов, что позволяет растормозить последние механическим путем.

Система аварийной сигнализации и контроля состоит из двух частей:

а) световой и акустической сигнализации о работе тормозных систем и их приводов.

В различных точках пневматического привода встроены пневмоэлектрические датчики, которые при действии любой тормозной

системы, кроме вспомогательной, замыкают цепи электрических ламп «стоп-сигнала».

Датчики падения давления установлены в ресиверах привода и при недостаточном давлении в последних замыкают цепи сигнальных электрических ламп, расположенных на панели приборов автомобиля, а также цепь звукового сигнала (зуммера).

б) клапанов контрольных выводов, с помощью которых производится диагностика технического состояния пневматического тормозного привода, а также (при необходимости) отбор сжатого воздуха.

На рисунке 1 представлена схема пневматического привода тормозных механизмов автомобиля КамАЗ - 5320

Рисунок 1 - Схема пневматического привода тормозных механизмов: 1 - камеры тормозные типа 24; 2 - кран управления стояночной тормозной системой; 3 - кран аварийного растормаживания стояночной тормозной системы; 4 - кран управления вспомогательной тормозной системой; 5 - манометр двухстрелочный; 6 - лампы контрольные и звуковой сигнализатор; 7 - клапан контрольных выводов; 8 - клапан ограничения давления; 9 - компрессор; 10 - пневмоцилиндр привода рычага останова двигателя; 11 - регулятор давления; 12 - предохранитель от замерзания; 13 - клапан двойной защитный; 14 -датчик включения электромагнитного клапана тормозного механизма прицепа; 15 - батареи аккумуляторные; 16 - кран двухсекционный тормозной; 17 - клапан тройной защитный; 18 - датчик падения давления в ресивере; 19 - краны слива конденсата; 20 - ресивер конденсационный; 21 - клапан отбора воздуха; 22 - ресиверы контура II; 23 - пневмоцилиндр привода заслонки вспомогательной тормозной системы; 24, 25 - ресиверы I и III контуров; 26 - камеры тормозные типа 20х20; 27 - датчик включения контрольной лампы стояночной тормозной системы; 28 - энергоаккумуляторы; 29 - клапан ускорительный; 30 - регулятор автоматический тормозных сил; 31 - клапан управления тормозными механизмами прицепа с двухпроводным приводом

Для наблюдения за работой пневматического тормозного привода, и своевременной сигнализации о его состоянии, и возникающих неисправностях в кабине, на щитке приборов имеются пять сигнальных лампочек, двухстрелочный манометр, показывающий давление сжатого воздуха в ресиверах двух контуров (I и II) пневматического привода рабочей тормозной системы, и зуммер, сигнализирующий об аварийном падении давления сжатого воздуха в ресиверах любого контура тормозного привода.

На рисунке 2 представлены тормозные механизмы автомобиля КамАЗ - 5320. Тормозные механизмы установлены на всех шести колесах автомобиля, основной узел тормозного механизма смонтирован на суппорте 2, жестко связанном с фланцем моста. На эксцентрики осей 1, закрепленные в суппорте, свободно опираются две тормозные колодки 7 с прикрепленными к ним фрикционными накладками 9, выполненными по серповидному профилю в соответствии с характером их износа. Оси колодок с эксцентричными опорными поверхностями позволяют при сборке тормозных механизмов правильно сцентрировать колодки относительно тормозного барабана. Тормозной барабан крепится к ступице колеса пятью болтами.

При торможении колодки раздвигаются S-образным кулаком 12 и прижимаются к внутренней поверхности барабана. Между разжимным кулаком 12 и колодками 7 установлены ролики 13, снижающие трение и улучшающие эффективность торможения. В отторможенное состояние колодки возвращаются четырьмя оттяжными пружинами 8.

Разжимной кулак 12 вращается в кронштейне 10, прикрепленном к суппорту болтами. На этом кронштейне устанавливается тормозная камера. На конце вала разжимного кулака установлен регулировочный рычаг 14 червячного типа, соединенный со штоком тормозной камеры при помощи вилки и пальца. Щиток, прикрепленный болтами к суппорту, защищает тормозной механизм от грязи.

Рисунок 2 - Механизм тормозной: 1 - ось колодки; 2 -суппорт; 3 - щиток; 4 - гайка оси; 5 - накладка осей колодок;6 - чека оси колодки; 7 - колодка тормозная; 8 - пружина; 9 - накладка фрикционная; 10-кронштейн разжимного кулака; 11 - ось ролика; 12 - кулак разжимной; 13 - ролик; 14 - рычаг регулировочный

Регулировочный рычаг предназначен для уменьшения зазора между колодками и тормозным барабаном, увеличивающимся вследствие износа фрикционных накладок. Устройство регулировочного рычага показано на рисунке 4. Регулировочный рычаг имеет стальной корпус 6 с втулкой 7.

В корпусе находится червячное зубчатое колесо 3 со шлицевыми отверстиями для установки на разжимной кулак и червяк 5 с запрессованной в него осью 11. Для фиксации оси червяка имеется стопорное устройство, шарик 10 которого входит в лунки на оси 11 червяка под действием пружины 9,упирающейся в стопорный болт 8. Зубчатое колесо удерживается от выпадания крышками 1, прикрепленными к корпусу 6 рычага. При повороте оси (за квадратный конец) червяк поворачивает колесо 3, а вместе с ним поворачивается разжимной кулак, раздвигая колодки и уменьшая зазор между колодками и тормозным барабаном. При торможении регулировочный рычаг поворачивается штоком тормозной камеры.

Перед регулированием зазора стопорный болт 8 необходимо ослабить на один-два оборота, после регулировки болт надежно затянуть.

Рисунок 3 - Рычаг регулировочный: 1 - крышка; 2 - заклепка; 3 - колесо зубчатое; 4 - заглушка; 5 - червяк; 6 - корпус; 7 - втулка; 8 - болт стопорный; 9 - пружина фиксатора; 10 - шарик фиксатора; 11 - ось червяка; 12 - масленка

Механизм вспомогательной тормозной системы представлен на рисунке 4.

В приемных трубах глушителя установлены корпус 1 и заслонка 3, закрепленная на валу 4. На валу заслонки закреплен также поворотный рычаг 2, соединенный со штоком пневмоцилиндра. Рычаг 2 и связанная с ним заслонка 3 имеют два положения. Внутренняя полость корпуса сферическая. При выключении вспомогательной тормозной системы заслонка 3 устанавливается вдоль потока отработавших газов, а при включении -- перпендикулярно потоку, создавая определенное противодавление в выпускных коллекторах. Одновременно прекращается подача топлива. Двигатель начинает работать в режиме компрессора.

Поршень алюминиевый, с плавающим пальцем. От осевого перемещения палец в бобышках поршня фиксируется упорными кольцами. Воздух из коллектора двигателя поступает в цилиндр компрессора через пластинчатый впускной клапан.

Рисунок 4 - Механизм вспомогательной тормозной системы: 1 - корпус; 2 - рычаг поворотный; 3 - заслонка; 4 - вал. Компрессор (рисунок 5) поршневого типа, одноцилиндровый, одноступенчатого сжатия. Компрессор закреплен на переднем торце картера маховика двигателя

Сжатый поршнем воздух вытесняется в пневмосистему через расположенный в головке цилиндра пластинчатый нагнетательный клапан.

Головка охлаждается жидкостью, подводимой из системы охлаждения двигателя. Масло к трущимся поверхностям компрессора подается из масляной магистрали двигателя: к заднему торцу коленчатого вала компрессора и по каналам коленчатого вала к шатуну. Поршневой палец и стенки цилиндра смазываются разбрызгиванием.

При достижении в пневмосистеме давления 800-2000 кПа регулятор давления сообщает нагнетательную магистраль с окружающей средой, прекращая подачу воздуха в пневмосистему.

Когда давление воздуха в пневмосистеме снизится до 650-50кПа, регулятор перекрывает выход воздуха в окружающую среду и компрессор снова начинает нагнетать воздух в пневмосистему.

Регулятор давления (рисунок 6) предназначен:

  • - для регулирования давления сжатого воздуха в пневмосистеме;
  • - предохранения пневмосистемы от перегрузки избыточным давлением;
  • - очистки сжатого воздуха от влаги и масла;
  • - обеспечения накачки шин.

Сжатый воздух от компрессора через вывод IV регулятора, фильтр 2, канал 12 подается в кольцевой канал. Через обратный клапан 11 сжатый воздух поступает к выводу II и далее в ресиверы пневмосистемы автомобиля. Одновременно по каналу 9 сжатый воздух проходит под поршень 8, который нагружен уравновешивающей пружиной 5. При этом выпускной клапан 4,

соединяющий полость над разгрузочным поршнем 14 с атмосферой через вывод I, открыт, а впускной клапан 13 под действием пружины закрыт. Под действием пружины закрыт также и разгрузочный клапан 1. При таком состоянии регулятора система наполняется сжатым воздухом от компрессора. При давлении в полости под поршнем 8, равном 686,5.. 735,5 кПа (7 .. 7,5 кгс/ см2), поршень, преодолев усилие уравновешивающей пружины 5, поднимается вверх, клапан 4 закрывается, впускной клапан 13 открывается. Под действием сжатого воздуха разгрузочный поршень 14 перемещается вниз, разгрузочный клапан 1 открывается, и сжатый воздух из компрессора через вывод III выходит в атмосферу вместе со скопившимся в полости конденсатом. При этом давление в кольцевом канале падает и обратный клапан 11 закрывается. Таким образом, компрессор работает в разгруженном режиме без противодавления.

Когда давление в выводе II понизится до 608.. 637,5 кПа, поршень 8 под действием пружины 5 перемещается вниз, клапан 13 закрывается, а выпускной клапан 4 открывается. При этом разгрузочный поршень 14 под действием пружины поднимается вверх, клапан 1 под действием пружины закрывается, и компрессор нагнетает сжатый воздух в пневмосистему.

Разгрузочный клапан 1 служит также предохранительным клапаном. Если регулятор не срабатывает при давлении 686,5.. 735,5 кПа (7.. 7,5 кгс/см2), то клапан 1 открывается, преодолев сопротивление своей пружины и пружины поршня 14. Клапан 1 открывается при давлении 980,7.. 1274,9 кПа (10.. 13 кгс/см2). Давление открытия регулируют изменением количества прокладок, установленных под пружиной клапана.

Рисунок 5 - Регулятор давления: 1 - клапан разгрузочный; 2 -фильтр; 3 - пробка канала отбора воздуха; 4 - клапан выпускной; 5 - пружина уравновешивающая; 6 - винт регулировочный; 7 - чехол защитный; 8 - поршень следящий; 9, 10, 12 - каналы; 11 - клапан обратный; 13 - клапан впускной; 14 - поршень разгрузочный; 15 - седло разгрузочного клапана; 16 - клапан для накачки шин; 17 -колпачок; I, III - выводы атмосферные; II - в пневмосистему; IV - от компрессора; С - полость под следящим поршнем; D - полость под разгрузочным поршнем

Для присоединения специальных устройств регулятор давления имеет вывод, который соединен с выводом IV через фильтр 2. Этот вывод закрыт резьбовой пробкой 3. Кроме того, предусмотрен клапан отбора воздуха для накачки шин, который закрыт колпачком 17. При навинчивании штуцера шланга для накачки шин клапан утапливается, открывая доступ сжатому воздуху в шланг и преграждая проход сжатого воздуха в тормозную систему. Перед накачиванием шин давление в ресиверах следует понизить до давления, соответствующего давлению включения регулятора, так как во время холостого хода нельзя произвести отбор воздуха.

Двухсекционный тормозной кран (рисунок 6) служит для управления исполнительными механизмами двухконтурного привода рабочей тормозной системы автомобиля.

Рисунок 6 - Кран тормозной с приводом от педали: 1 - педаль; 2 - регулировочный болт; 3 - защитный чехол; 4 - ось ролика; 5 - ролик; 6 - толкатель; 7 - опорная плита; 8 -гайка; 9 - тарелка; 10,16, 19, 27 - уплотнительные кольца; 11 - шпилька; 12 - пружина следящего поршня; 13, 24 -пружины клапанов; 14, 20 - тарелки пружин клапанов; 15 - малый поршень; 17 - клапан нижней секции; 18 -толкатель малого поршня;21 - атмосферный клапан; 22 -упорное кольцо; 23 - корпус атмосферного клапана; 25 -нижний корпус; 26 - пружина малого поршня; 28 -большой поршень; 29 - клапан верхней секции; 30 -следящий поршень; 31 - упругий элемент; 32 - верхний корпус; А - отверстие; В - полость над большим поршнем; I, II - ввод от ресивера; III, IV - вывод к тормозным камерам соответственно

Управление краном осуществляется педалью, непосредственно связанной с тормозным краном.

Кран имеет две независимые секции, расположенные последовательно. Вводы I и II крана соединены с ресиверами двух раздельных контуров привода рабочей тормозной системы. От выводов III и IV сжатый воздух поступает к тормозным камерам. При нажатии на тормозную педаль силовое воздействие передается через толкатель 6, тарелку 9 и упругий элемент 31 на следящий поршень 30. Перемещаясь вниз, следящий поршень 30 сначала закрывает выпускное отверстие клапана 29 верхней секции тормозного крана, а затем отрывает клапан 29 от седла в верхнем корпусе 32, открывая проход сжатому воздуху через ввод II и вывод III и далее к исполнительным механизмам одного из контуров. Давление на выводе III повышается до тех пор, пока сила нажатия на педаль 1 не уравновесится усилием, создаваемым этим давлением на поршень 30. Так осуществляется следящее действие в верхней секции тормозного крана. Одновременно с повышением давления на выводе III сжатый воздух через отверстие А попадает в полость В над большим поршнем 28 нижней секции тормозного крана. Перемещаясь вниз, большой поршень 28 закрывает выпускное отверстие клапана 17 и отрывает его от седла в нижнем корпусе.

Сжатый воздух через ввод I поступает к выводу IV и далее в исполнительные механизмы первого контура рабочей тормозной системы.

Одновременно с повышением давления на выводе IV возрастает давление под поршнями 15 и 28, в результате чего уравновешивается сила, действующая на поршень 28 сверху. Вследствие этого на выводе IV также устанавливается давление, соответствующее усилию на рычаге тормозного крана. Так осуществляется следящее действие в нижней секции тормозного крана.

При отказе в работе верхней секции тормозного крана нижняя секция будет управляться механически через шпильку 11 и толкатель 18 малого поршня 15, полностью сохраняя работоспособность. При этом следящее действие осуществляется уравновешиванием силы, приложенной к педали 1, давлением воздуха на малый поршень 15. При отказе в работе нижней секции тормозного крана верхняя секция работает как обычно.

Камера тормозная с пружинным энергоаккумулятором типа 20/20 показана на рисунке 7. Она предназначена для приведения в действие тормозных механизмов колес задней тележки автомобиля при включении рабочей, запасной и стояночной тормозных систем.

Пружинные энергоаккумуляторы вместе с тормозными камерами установлены на кронштейны разжимных кулаков тормозных механизмов задней тележки и закреплены двумя гайками с болтами.

При торможении рабочей тормозной системой сжатый воздух от тормозного крана подается в полость над мембраной 16. Мембрана 16, прогибаясь, воздействует на диск 17, который через шайбу и контргайку перемещает шток 18 и поворачивает регулировочный рычаг с разжимным кулаком тормозного механизма.

Таким образом, торможение задних колес происходит так же, как и торможение передних с обычной тормозной камерой.

При включении запасной или стояночной тормозной системы, то есть при выпуске воздуха ручным краном из полости под поршнем 5, пружина 8 разжимается и поршень 5 перемещается вниз. Подпятник 2 через мембрану 16 воздействует на подпятник штока 18, который, перемещаясь, поворачивает связанный с ним регулировочный рычаг тормозного механизма. Происходит затормаживание автомобиля.

При оттормаживании сжатый воздух поступает через вывод под поршень 5. Поршень вместе с толкателем 4 и подпятником 2 перемещается вверх, сжимая пружину 8 и дает возможность штоку 18 тормозной камеры под действием возвратной пружины 19 вернуться в исходное положение.

Рисунок 7 - Камера тормозная типа 20/20 с пружинным энергоаккумулятором: 1 - корпус; 2 - подпятник; 3 - кольцо уплотнительное; 4 - толкатель; 5 - поршень; 6 - уплотнение поршня; 7 - цилиндр энергоаккумулятора; 8 - пружина; 9 - винт механизма аварийного растормаживания; 10 -гайка упорная; 11- патрубок цилиндра; 12 - трубка дренажная; 13 - подшипник упорный; 14 - фланец; 15 -патрубок тормозной камеры; 16 - мембрана; 17 - диск опорный; 18 - шток; 19 - пружина возвратная

Page 2

Требования, классификация, применяемость тормозных систем современных автомобилей.

К тормозному управлению автомобиля, служащему для замедления движения, вплоть до полной остановки и удержания его на месте на стоянке, предъявляются повышенные требования, так как тормозное управление является важнейшим средством обеспечение активной безопасности автомобиля. Требования к тормозным системам регламентированы ГОСТ 22895-95 и международными правилами дорожного движения.

Требования к тормозным системам следующие:

  • 1. Максимальный тормозной путь максимальное установившееся замедление в соответствии с требованиями ГОСТ 22895-95 г., для пассажирских автомобилей и грузовых автомобилей в зависимости от типа испытаний.
  • 2. Сохранение устойчивости при торможении (критериями устойчивости служат: линейное отклонение, угловое отклонение, угол складывания автопоезда.)
  • 3. Стабильность тормозных свойств при неоднократном торможении.
  • 4. Минимальное время срабатывания тормозного привода.
  • 5. Силовое следящее действие тормозного привода, то есть пропорциональность между усилием на педаль и приводным моментом.
  • 6. Малая работа управления тормозными системами - усилие на тормозные педали в зависимости от назначения автотранспортного средства должно быть в пределах 500….7ОО Н, ход тормозной педали 80…180мм.
  • 7. Отсутствие органолептических явлений (слуховых).
  • 8. Надежность всех элементов тормозных систем, основные элементы (тормозная педаль, главный тормозной цилиндр, тормозной кран и др.) должны иметь гарантированную прочность, не должны выходить из строя на протяжении гарантированного ресурса, должна быть также предусмотрена сигнализация, оповещающая водителя о неисправности тормозной системы.

В соответствии с ГОСТ 22895-95 тормозное управление должно включать

следующие тормозные системы:

  • - рабочую
  • - запасную
  • - стояночную
  • - вспомогательную (тормоз-замедлитель), обязательную для автобусов полной массой свыше 5 т. и грузовых автомобилей массой свыше 12 т., предназначенную для торможения на длительных спусках и поддерживающих скорость 30км/ч на спуске с уклоном 7% протяженностью 6км.

Каждая из перечисленных тормозных систем включает один или несколько тормозных механизмов и тормозной привод.

Классификация тормозных механизмов.

Тормозной механизм:

  • - Механический (Фрикционный)
  • - гидравлический
  • - электрический
  • - Дисковый
  • - барабанный
  • - колесный
  • -трансмиссионный
  • -Колодочный
  • -ленточный

Принудительное замедление может осуществляться различными способами: механическим, гидравлическим, электрическим, внеколесным.

Наиболее широко используются фрикционные тормозные механизмы.

На легковых автомобилях большого класса часто используются дисковые тормозные механизмы на передних колесах и барабанные колодочные на задних колесах.

На грузовых автомобилях независимо от их грузоподъемности устанавливаются барабанные колодочные тормозные механизмы. Лишь в последние годы наметилась тенденция использования дисковых механизмов для грузовых автомобилей.

Барабанные ленточные тормозные механизмы в качестве колесных в настоящее время не применяются совсем. В редких случаях их применяют как трансмиссионные для стояночной тормозной системы (МАЗ, Белаз-540)

Гидравлические и электрические тормозные механизмы используют как тормозо-замедлители. На ряде автомобилей тормозом-замедлителем является двигатель, впускной коллектор перекрывается стальной заслонкой.

Классификация тормозных приводов

Тормозной привод:

  • - механический
  • - комбинированный
  • - гидравлический
  • - Электрический
  • - пневматический

Механический привод, состоящий из тяг и рычагов, применяют в основном в тормозных системах с ручным управлением ( вспомогательная тормозная система -,,стояночный- тормоз'').

В данном приводе для включения тормозного механизма используется мускульная энергия водителя. Простота конструкции и неизменная во времени жесткость механического привода делают его наиболее применяемым для стояночной тормозной системы.

Гидравлический привод применяется в рабочей тормозной системе легковых автомобилей и грузовых малой и средней грузоподъемности. В данном приводе усилие оси педали к тормозным механизмам передается жидкостью. Для включения тормозов используется мускульная энергия водителя. Для обеспечения водителю работы по включению тормозов нередко применяют гидравлический привод с вакуумным (ГАЗ-66) или пневматическим усилителем (Урал-4320).

В настоящее время начинают получать распространение гидравлический привод с насосом. В этом случае для включения тормозных механизмов и создания, необходимых для быстрого торможения автомобиля тормозных моментов на колесах используется энергия двигателя приводящего в действие гидравлический насос непосредственно, или через какой-либо агрегат силовой передачи автомобиля.

Пневматический привод широко используется в тормозной системе тягачей, грузовых автомобилей средней и большой грузоподъемности и автобусов. В тормозной системе с пневматическим приводом тормозные механизмы включаются за счет использования энергии сжатого воздуха.

На длиннобазных автомобилях и тягачах большегрузных автопоездов часто используются комбинированный привод гидропневматический. В данном приводе для увеличения тормозных усилий используется энергия сжатого воздуха, а передача их к тормозному механизму осуществляется жидкостью.

Электрический привод необходим на автопоездах, так как при этом достигается наиболее простой способ передачи энергии на большие расстояния при весьма малом времени на срабатывания тормозной системы.

Для оценки конструктивных схем тормозных механизмов служат следующие критерии:

1. Коэффициент тормозной эффективности.

Это состояние тормозного момента, создаваемого тормозным механизмом к условному приводному моменту

Кэ= Мтор /(SРrтр)

Где: Мтор - тормозной момент.

SР - сумма приводных сил.

rтр - радиус приложения результирующих сил трения.

Тормозная эффективность должна оцениваться раздельно при движении вперед и назад.

2. Стабильность.

Этот критерий характеризует зависимость коэффициента тормозной эффективности от изменения коэффициента трения. Эта зависимость представляется графиком статистической характеристики тормозного механизма. Лучшей стабильностью обладают тормозные механизмы, характеризуемые линейной зависимостью.

3. Уравновешенность.

Уравновешенными являются тормозные механизмы, в которых силы трения не создают нагрузку на подшипники колеса.

Для оценки конкретных конструкций тормозных механизмов необходимо дополнительно пользоваться расчетными нормативами (давление на колодке, нагрев тормозного барабана). До настоящего времени считалось, что барабанные тормозные механизмы наиболее удовлетворяют требованиям безопасности движения, но в связи с возросшими скоростями движения автомобиля, повышаются и требования безопасности движения, во многом зависящих от тормозных качеств автомобиля.

Сравнительные стендовые испытания различных вариантов конструкций закрытых дисковых и барабанных тормозных механизмов для автомобилей выявили, что наилучшими показателями по стабильности выходных параметров, теплонапряженности и массе обладает дисковый тормоз с двумя поверхностями трения, пневматическим приводом и усилителем

Анализ тормозных механизмов грузовых автомобилей.

Проведя сравнение и краткий анализ вышеперечисленных тормозных механизмов подведем итог. В результате сравнения мы выяснили, что наилучшими показателями обладали дисковый тормозной механизм с двумя поверхностями трения. Он обладает следующими достоинствами:

  • 1. Меньшая масса.
  • 2. Компоновочные достоинства.
  • 3. Меньшая температура тормозной жидкости.

Но дисковые тормозные механизмы обладают существенным недостатком: недостаточная защищенность от грязи. Так как армейские автомобили часто используются в условиях бездорожья, то сзади будем использовать барабанный колодочный тормозной механизм.

Проведенные дорожно-лабораторные испытания барабанных и дисковых тормозов Харьковским АДИ показали, что в случае нагрева тормозных деталей до 300 С и V = 40 км/ч тормозной путь увеличивается при торможении дисковыми тормозами на 7%, а барабанными на 25%. Если нормальная скорость та же, но объемная температура достигнет 500 С, тормозной путь увеличится на 21% и 55% соответственно.

Меньшая чувствительность дисковых тормозов к смачиванию и загрязнению объясняется тем, что поверхности трения плоские и попавшая между ними грязь и вода выдавливается более легко, чем в барабанном тормозе, а так же тем, что при вращении вода и грязь центробежной силой сбрасываются с поверхности трения, а у барабанного - заносятся на него.

В результате проведения данного анализа можно сделать заключение, что в данной ситуации более выгодно будет применение смешанной системы тормозных механизмов в которой передние колеса снабжаются дисковым тормозным механизмом с двумя поверхностями трения, а задние колеса барабанным колодочным тормозным механизмом.

Анализ тормозных приводов грузовых автомобилей.

Проведя анализ всех имеющихся тормозных приводов мы выяснили, что лучшим для грузового автомобиля будет использование пневматического привода с усилителем. Он обладает рядом преимуществ перед другими тормозными приводами:

  • 1. Практически неограниченное приводное усилие тормозных механизмов.
  • 2. Широкое применение на автопоездах.
  • 3. Простота конструкции.

Введение

Автомобили КамАЗ предназначены для работы во всех отраслях народного хозяйства. Объединением КамАЗ, включающим 10 основных заводов, выпускаются автомобили колесных формул 4x2, 6x4 и 6x6 - для эксплуатации на дорогах с различным покрытием и полноприводные - по бездорожью.

Автомобили КамАЗ, как и другие автомобили, состоит из ряда систем (пуска; питания топливом; смазки; охлаждения; тормозной и др), их агрегатов и узлов, а также рамы, кабины, платформы, двигателя, трансмиссии и др. Каждая система и агрегат выполняют свои функции для обеспечения бесперебойной и безопасной работы всего автомобиля.

В нашей стране автомобили используют во всех отраслях народного хозяйства - в промышленности, сельском хозяйстве, торговле. Благодаря высокой манёвренности, проходимости и приспособленности к работе в различных условиях, автомобильный транспорт стал одним из основных средств перевозки грузов и пассажиров.

Данная тема мною выбрана вследствие того, что автопарк нашей страны как пополнялся так и пополняется автомобилями модели КАМАЗ-5320. Целью написания моей курсовой работы является в полном объеме описать общее устройство, принцип действия, техническое обслуживание автомобиля КАМАЗ-5320 и ремонт стояночной тормозной системы автомобиля КАМАЗ-5320 в целом и отдельных приборов.

Задачи - сделать вывод о надежности, современности конструкции стояночной тормозной системы автомобиля КАМАЗ - 5320.

В настоящее время идет дальнейшее совершенствование технологии ремонта автомобилей КАМАЗ-5320 и их агрегатов. Этот процесс реализуется путем внедрения в производство перспективных прогрессивных технологических процессов восстановления деталей.

Назначение стояночной тормозной системы автомобиля КАМАЗ 5320

Стояночная тормозная система предназначена для удержания автомобиля в неподвижном состоянии на стоянке, может выполнять функцию запасной тормозной системы, затормаживая автомобиль при отказе рабочей тормозной системы.

Стояночная тормозная система затормаживает автомобиль с помощью тормозных механизмов задней оси (задней тележки), которые приводятся в действие от пружинных энергоаккумуляторов, расположенных над тормозными камерами рабочей тормозной системы. Причем энергоаккумуляторы обратного действия - при подаче воздуха в его рабочую полость тормозной механизм растормаживается, а при выпуске воздуха затормаживается за счет энергии сжатой пружины. Это обеспечивает повышенную безопасность при эксплуатации автомобиля.

Устройство стояночной тормозной системы автомобиля КАМАЗ 5320

Привод стояночной тормозной системы (контур III) пневматический. Привод состоит (рис.1) из секции четырехконтурного защитного клапана 1, ресивера 8, ручного крана управления 4, двухмагистрального перепускного клапана 16, ускорительного клапана 2, крана экстренного растормаживания 17, пружинных энергоаккумуляторов 14, включателя сигнальной лампы стояночной тормозной системы 3, включателя сигнализатора аварийного падения давления воздуха в контуре 7, клапанов контрольного вывода 9 и 15.

Источником давления в контуре является ресивер емкостью 20 л. В ресивере 8 установлен включатель сигнализатора аварийного падения давления воздуха в контуре, кран слива конденсата, а также клапан контрольного вывода 9.

Рис.1 - Привод стояночной тормозной системы и тормозных систем прицепа

1 - четырехконтурный защитный клапан; 2 - ускорительный клапан; 3 - включатель контрольной лампы стояночной тормозной системы; 4 - кран управления; 5 - клапан обрыва;6 - клапан управления тормозными системами прицепа с двухпроводным приводом; 7 - включатель сигнализатора аварийного падения давления воздуха; 8 - ресивер; 9, 15 - клапан контрольного вывода; 10, 12 - автоматическая соединительная головка; 11 - соединительная головка типа А; 13 - клапан управления тормозными системами прицепа с однопроводным приводом; 14 - пружинный энергоаккумулятор; 16 - двухмагистральный перепускной клапан; 17 - кран экстренного растормаживания

Исполнительными устройствами привода стояночной тормозной системы являются пружинные энергоаккумуляторы, смонтированные на крышках тормозных камер задних тормозных механизмов.

В полость под поршнем при растормаживании подается сжатый воздух от ускорительного клапана контура III. Под действием давления воздуха поршень 5 поднимается вверх, сжимая силовую пружину 8. Толкатель 4 также поднимается вверх вместе с поршнем 5, освобождая мембрану тормозной камеры рабочей тормозной системы. Происходит растормаживание тормозного механизма.

При торможении стояночной тормозной системой воздух из подпоршневого пространства стравливается в атмосферу через ускорительный клапан.

Силовая пружина перемещает поршень 5 вниз. При этом толкатель 4 своим подпятником 2 воздействует на мембрану тормозной камеры и перемещает ее вместе со штоком вниз. Тормозной механизм затормаживается.

В случае, когда в пневмосистеме отсутствует сжатый воздух, автомобиль заторможен пружинными энергоаккумуляторами. При резкой потере давления сжатого воздуха в пневмосистеме, например, при повреждении трубопровода в контуре III, происходит автоматическое затормаживание автомобиля, что повышает безопасность движения.

Для буксировки неисправного автомобиля предусмотрена возможность аварийного растормаживания пружинных энергоаккумуляторов с помощью винта 9. Для этого необходимо вывернуть винты из корпуса на максимальную величину (примерно 120 мм). При этом винт через упорный подшипник 13 воздействует на толкатель и поршень, перемещая их вверх. Силовая пружина сжимается, освобождая мембрану и шток тормозной камеры.

Разбирать пружинные энергоаккумуляторы без специального приспособления категорически запрещается!

Сжатый воздух в пружинные энергоаккумуляторы подается от ресивера 8 (рис.1) через ускорительный клапан 2, установленный на правом лонжероне рамы в районе заднего (промежуточного) моста. Управление ускорительным клапаном производится от тормозного крана обратного действия с ручным управлением, установленного в кабине, справа от сиденья водителя. Термин «обратного действия» означает, что в исходном состоянии, во время движения, он подает сжатый воздух в пружинные энергоаккумуляторы, а при торможении, выпускает воздух из них в атмосферу.

Тормозной кран управления стояночной тормозной системой (рис.2) предназначен для управления пружинными энергоаккумуляторами привода стояночной тормозной системы. Он состоит из корпуса 1, крышки корпуса 8 с рукояткой 19 и фиксатором 21, поршня 3 с выпускным клапаном 13, штока 12 с направляющей 10, фигурного кольца 9, направляющего колпачка 20, уравновешивающей пружины 4 , поршня 16 с пружиной 17 и регулировочным винтом 18.

К ручному тормозному крану через вывод IV подводится сжатый воздух от ресивера. Вывод II соединен с управляющей полостью ускорительного клапана. Через вывод III тормозной кран связан с атмосферой. Вывод I связан со средней полостью клапана управления тормозными системами прицепа с двухпроводным приводом. Полость А соединена каналом с выводом I.

В следящем поршне 3 выполнено впускное седло, к которому с помощью пружины прижимается клапан 13, выполняющий, в этом случае, функцию впускного клапана, а при взаимодействии с седлом, выполненном на торце штока 12, функцию выпускного клапана.

Рис. 2 - Тормозной кран управления стояночной тормозной системой.

1 - корпус; 2, 22, 23 - пружина; 3 - следящий поршень; 4 - уравновешивающая пружина;5 - тарелка пружины; 6 - ось с роликом; 7 - рукоятка крана; 8 - крышка; 9 - фигурное кольцо; 10 - направляющая штока; 11 - кольцо уплотнительное; 12 - шток; 13 - клапан; 14 - стопорное кольцо; 15 - клапан с пружиной; 16 - поршень; 17 - пружина поршня; 18 - регулировочный винт; 19 - рукоятка; 20 - направляющий колпачок; 21 - фиксатор; I - вывод к клапану управления тормозными системами прицепа с двухпроводным приводом; II - вывод к ускорительному клапану; III - атмосферный вывод; IV - питающий ввод; А - полость

Рукоятка тормозного крана может занимать два фиксированных положения (рис.3). В положении I сжатый воздух поступает в энергоаккумуляторы, что обеспечивает расторможенное состояние.

Рис.3 - Положения рукоятки тормозного крана

1 - стопорная планка; 2 - ролик фиксатора; I - расторможенное состояние; II - торможение стояночной тормозной системой; III - растормаживание прицепа

В положении II сжатый воздух из энергоаккумуляторов выпускается в атмосферу - автомобиль заторможен стояночной тормозной системой. При переводе рычага в нефиксированное положение III (до упора ролика 2 в пазу стопорной пластины 1) происходит подача воздуха в среднюю полость клапана управления тормозными системами прицепа с двухпроводным приводом, что приводит к растормаживанию прицепа на время, пока водитель удерживает рукоятку в положении III. Это положение используется для проверки надежности удержания автопоезда на уклоне стояночной тормозной системой автомобиля-тягача. Таким образом имитируется возможное растормаживание прицепа при длительной стоянке, вследствие утечки сжатого воздуха из тормозного привода прицепа. После проверки рукоятка автоматически возвращается в положение II. В случае фиксации рукоятки между положениями I и II давление воздуха в энергоаккумуляторах также фиксируется на величине, пропорциональной углу поворота рукоятки тормозного крана. Эта особенность тормозного крана позволяет использовать стояночную тормозную систему в качестве запасной.

В отторможенном состоянии (при горизонтальном положении рукоятки крана) сжатый воздух проходит через открытый впускной клапан крана в вывод II и далее в управляющую полость ускорительного клапана и средний ввод клапана управления тормозными системами прицепа с двухпроводным приводом. Сжатый воздух через ускорительный клапан подается в полости энергоаккумуляторов. Силовые пружины сжимаются, и тормозные механизмы автомобиля растормаживаются. Одновременно клапан управления тормозными системами прицепа производит растормаживание прицепа.

При повороте рукоятки крана вместе с крышкой 1 (рис.4) поворачивается направляющий колпачок 2. Скользя по винтовым поверхностям кольца 3, колпачок 2 поднимается вверх и увлекает за собой шток 12 (рис.2). Выпускное седло отрывается от клапана 13, и клапан под действием пружины 2 поднимается до упора в седло следящегопоршня 3.

Рис. 4.Корпус рукоятки крана.

тормозной автомобиль стояночный ремонт

Рис. 5 - Схема работы тормозного крана стояночной тормозной системы а - расторможенное состояние; б - торможение

Стопорная планка крана имеет профиль, обеспечивающий автоматический возврат рукоятки в нижнее положение при ее отпускании. Только в крайнем верхнем положении фиксатор (рис.5) рукоятки входит в специальный вырез стопорной планки и фиксирует рукоятку.

При этом энергоаккумуляторы сообщаются с атмосферой через ускорительный клапан, эффективность торможения максимальная.

Для растормаживания пружинных энергоаккумуляторов рукоятку крана необходимо вытянуть вверх, при этом фиксатор выходит из паза стопорной пластины, и рукоятка свободно возвращается в нижнее положение. При остановке с прицепом на уклоне водитель обязан убедиться в том, что возможная утечка воздуха из привода тормозных систем прицепа не приведет к несанкционированному движению автопоезда по причине растормаживания прицепа. Для этого, после остановки на уклоне, необходимо перевести рукоятку тормозного крана в положение III(рис.5) и удержать в этом положении несколько секунд. При этом сжатый воздух подается в вывод I и далее в средний ввод клапана управления тормозными системами прицепа с двухпроводным приводом. Прицеп растормаживается. После отпускания рукоятки тормозного крана, за счет наклонной поверхности в пазу стопорной пластины, она возвращается в положение II. Прицеп снова затормаживается. Подача сжатого воздуха в привод стояночной тормозной системы может производиться двумя путями. Первый путь предусматривает подачу сжатого воздуха через секцию четырехконтурного защитного клапана. Настройка секции защитного клапана обеспечивает заполнение ресивера контура стояночной тормозной системы в последнюю очередь, после заполнения ресиверов рабочей тормозной системы. Это гарантирует готовность всех тормозных систем к работе до начала движения автомобиля, на что затрачивается несколько минут.

С целью сокращения времени, необходимого для подготовки автомобиля к движению в экстренных случаях, в тормозном приводе установлен кран экстренного растормаживания (рис.6), который позволяет при необходимости подать сжатый воздух к ускорительному клапану и крану управления стояночной тормозной системой непосредственно от питающего контура, минуя четырехконтурный клапан. Поскольку на пути сжатого воздуха, в этом случае, нет сопротивлений в виде закрытых под действием пружин клапанов, сжатый воздух при горизонтальном положении рукоятки тормозного крана беспрепятственно проходит в полость энергоаккумуляторов, минуя ресивер. Растормаживание автомобиля происходит через 10-20 с после запуска двигателя.

Для уменьшения вероятности аварийной ситуации кран экстренного растормаживания должен быть постоянно в закрытом положении и открываться только при необходимости.

Кран экстренного растормаживания (рис.6) расположен на первой поперечине рамы с правой стороны в районе головной фары и по внешнему виду напоминает клапан контрольного вывода.Он состоит из корпуса 1, в котором расположен толкатель 3, с уплотнительными кольцами 4 и 5. Под действием пружины 2,толкатель 3 прижимается к седлу в корпусе, разобщая входное и выходное отверстия. На резьбовой участок корпуса навернута гайка-барашек 7, выполненная из полимера. В выключенном положении она должна быть навернута на 2-3 витка резьбы. Для открытия клапана гайку-барашек необходимо завернуть до упора.

Рис. 6 - Кран экстренного растормаживания 1 - корпус; 2 - пружина; 3 - толкатель; 4, 5 - кольцо уплотнительное; 6 - лента; 7 - гайка-барашек; 8 -шайба; 9 - прокладка

Толкатель с уплотнительным кольцом 4 переместится, освобождая седло для прохода воздуха от питающего контура к крану управления стояночной тормозной системой и ускорительному клапану через двухмагистральный перепускной клапан.

Двухмагистральный перепускной клапан (рис.7) предназначен для питания пневмоаппаратов от одной из двух магистралей сжатого воздуха, подсоединенных к клапану. Он состоит из корпуса 2 с крышкой 3, между которыми установлено уплотнительное кольцо 4. В полости клапана в свободном состоянии находится мембрана 1.

Рис. 7 - Двухмагистральный клапан 1 - мембрана; 2 - корпус; 3 - крышка; 4 - уплотнительное кольцо;I, II - вводы; III - вывод

К клапану с одной стороны подведена питающая магистраль от регулятора давления, с другой - от ресивера контура III. Третий вывод клапана соединен с вводом крана управления стояночной тормозной системой, а также с вводом ускорительного клапана контура III. При подаче воздуха от регулятора давления мембрана 1 перемещается и закрывает ввод магистрали от ресиверов, сжатый воздух проходит к крану управления стояночной тормозной системой и к ускорительному клапану. При использовании сжатого воздуха из ресивера мембрана закрывает ввод магистрали со стороны регулятора давления. Сжатый воздух снова проходит к крану управления стояночной тормозной системой и к ускорительному клапану, но поступает уже из ресивера.

Контур III, кроме стояночной тормозной системы осуществляет питание тормозных систем прицепа, а также управление ими. Полноприводные автомобили семейства «Мустанг» оснащены комбинированным (одно- и двухпроводным) приводом тормозных систем прицепа: В однопроводном приводе питание ресивера и управление воздухораспределителем прицепа производится по одной магистрали, которая имеет соединительную головку типа А. Причем во время длительного непрерывного торможения, пополнения ресивера тормозной системы прицепа не происходит. В двухпроводном приводе, питание ресиверов производится постоянно через питающую магистраль, а управление воздухораспределителем прицепа - через отдельную управляющую магистраль. Обе магистрали имеют автоматические соединительные головки.

В контур управления тормозными системами прицепа входит клапан управления тормозными системами прицепа с двухпроводным приводом, клапан управления тормозными системами прицепа с однопроводным приводом, две автоматические соединительные головки и одна головка типа А.

Клапан управления тормозными системами прицепа с двухпроводным приводом (рис.8) предназначен для приведения в действие тормозного пневмопривода прицепа при включении рабочей, запасной и стояночной тормозной системы тягача или любого из контуров раздельно.

Рис. 8 - Клапан управления тормозными системами прицепа с двухпроводным приводом

1 - мембрана; 2, 9, 11 - пружины; 3 - разгрузочный клапан; 4 - впускной клапан; 5 - верхний корпус; 6 - большой верхний поршень; 7 - тарелка пружины; 8 - регулировочный винт; 10 - малый верхний поршень; 12 - средний поршень; 13 - нижний поршень; 14 - нижний корпус; 15 - выпускное окно; 16 - гайка; 17 - шайба мембраны; 18 - средний корпус; I - ввод от нижней секции тормозного крана; II - ввод от крана управления стояночной тормозной системой; III - ввод от верхней секции тормозного крана; IV - вывод в управляющую магистраль прицепа; V - вывод в питающую магистраль прицепа; VI - атмосферный вывод;VII - ввод от ресивера

Клапан состоит из корпуса, выполненного из трех частей. С правой стороны к корпусу на двух болтах крепится клапан обрыва 5 (рис.8).

Между нижним 14 и средним 18 корпусами (рис.8) зажата резиновая мембрана 1, которая закреплена между двумя шайбами 17 на нижнем поршне 13 гайкой 16, уплотненной резиновым кольцом. На нижнем корпусе двумя винтами закреплено выпускное окно 15 с прикрепленным резиновым клапаном, предохраняющим прибор от попадания внутрь пыли и грязи. При ослаблении винтов выпускное окно 15 можно повернуть и открыть доступ к регулировочному винту 8 через отверстия клапана 4 и поршня 13. В верхнем корпусе установлен большой поршень 6 с конической пружиной 11, в центральном отверстии которого размещается малый поршень 10 с пружиной 9 и регулировочным устройством, выполненный заодно с выпускным седлом.

В средней секции корпуса установлен средний поршень с пружиной, в верхней части которого выполнено отверстие и впускное седло клапана 4. В нижней части поршня установлено стопорное кольцо, через которое осуществляется связь среднего 12 и нижнего 13 поршней. Клапан 4 плоский, выполняет роль впускного, взаимодействуя с седлом, выполненным на среднем поршне, и выпускного при взаимодействии с выпускным седлом малого поршня. Полый шток клапана 4 и осевой канал в нижнем поршне образуют выпускной канал, обеспечивающий сброс давления из управляющей магистрали тормозного привода прицепа. В исходном состоянии клапан 4 прижат к впускному седлу среднего поршня, выпускное седло оторвано от клапана и находится в крайнем верхнем положении. Клапан управления тормозными системами прицепа с двухпроводным приводом направляет сжатый воздух от его источника (ввод VII) к потребителям (вывод IV) при одновременном или раздельном поступлении управляющих сигналов от трех независимых контуров тормозного привода автомобиля-тягача. При этом через вводы I и III подается пневматический сигнал прямого действия (на повышение давления, соответственно от I и IIконтуров рабочей тормозной системы), а через ввод II - обратного действия (на понижение давления, от контура III привода стояночной тормозной системы). Кроме того, через полость под средним поршнем 12 постоянно проходит сжатый воздух от вывода VII, расположенного в клапане обрыва, в питающую магистраль прицепа через вывод V.

В соответствии с требованиями международных стандартов к тормозному управлению прицепного состава тормозной привод должен обеспечивать автоматическое затормаживание прицепа в случае повреждения питающей или управляющей магистралей. При повреждении питающей магистрали привода тормозных систем прицепа его затормаживание происходит автоматически за счет технических решений, заложенных в конструкцию воздухораспределителя прицепа. Указанная задача решается за счет того, что питающая магистраль постоянно находится под давлением сжатого воздуха. Если произошла разгерметизация питающей магистрали, давление в ней падает, что является управляющим сигналом для воздухораспределителя прицепа, по которому в его тормозные камеры подается сжатый воздух, запасенный в ресивере. Прицеп затормаживается.

Более сложная задача связана с определением повреждения в управляющей магистрали прицепа. Давление в ней появляется только при торможении. В расторможенном состоянии давления воздуха в ней нет. Для автоматического затормаживания прицепа в случае повреждения в его управляющей магистрали на клапане управления тормозными системами прицепа с двухпроводным приводом установлен клапан обрыва (рис.9), который состоит из корпуса 8, присоединенному к корпусу клапана управления тормозными системами прицепа с двухпроводным приводом с помощью двух болтов 3. В корпусе 8 расположенплавающий поршень 1, нагруженный пружиной 7 с уплотнительными кольцами 2 и 4, которые разделяют три полости клапана (А, Б, В) между собой. Названные полости соединены каналами с полостями клапана управления тормозными системами прицепа с двухпроводным приводом. Воздушные каналы в месте разъема уплотняются резиновыми кольцами. Полость В связана с вводом I клапана и его верхней полостью. Полость Б связана c управляющей магистралью прицепа через полость над средним поршнем и вывод IV. Полость А связана с ресивером контура III и через полость под средним поршнем и вывод V с питающей магистралью прицепа.В расторможенном состоянии плавающий поршень 1 давлением в полости А, действующим на его нижний торец поднят в верхнее положение. В первый момент торможения давление воздуха на вводе I и в полости В, связанных с первым контуром рабочей тормозной системы, перемещает плавающий поршень 1 вниз. Если разгерметизации управляющей магистрали нет, устанавливающееся в ней давление через канал в корпусе подается в полость Б и, воздействуя наплавающий поршень 1,совместно с давлением, действующим на его нижний торец, поднимает поршень вверх.

Рис. 9 - Клапан обрыва

1 - плавающий поршень; 2, 4 - кольцо уплотнительное; 3 - болт; 5 - опорное кольцо; 6 - пружина; 7 - тарелка пружины; 8 - корпус клапана обрыва; 9 - стопорное кольцо; 10 - крышка

Если управляющая магистраль повреждена и ее герметичность нарушена, то при торможении, через нее начнется интенсивное истечение сжатого воздуха, и давление в полости Б установится близкое к атмосферному. Плавающий поршень, смещенный в начале торможения вниз давлением воздуха в полости В и пружиной 7 останется в этом положении, и его нижняя часть частично перекроет ввод VII, ограничивая поступление воздуха в питающую магистраль прицепа. Поскольку при торможении открытый клапан 4 (рис.8) в среднем поршне 12 позволяет перетекать воздуху из вывода V в вывод IV, связанный с поврежденной управляющей магистралью прицепа, давление в выводе V и питающей магистрали прицепа резко начнет падать, что вызовет срабатывание воздухораспределителя прицепа и торможение последнего.

При эксплуатации автомобиля с прицепом, оснащенным однопроводным тормозным приводом используется клапан управления тормозными системами прицепа с однопроводным приводом, установленный в задней части рамы автомобиля, связанный с соединительной магистралью прицепа через соединительную головку типа А.

Клапан управления тормозными системами прицепа с однопроводным приводом (рис.10) предназначен для приведения в действие привода тормозной системы прицепа при работе тормозных систем тягача.

Рис. 10 - Клапан управления тормозными системами прицепа с однопроводным приводом

а) устройство клапана; б) схема работы при отсутствии торможения; в) схема работы при торможении; 1 - тарелка пружины; 2 - нижняя крышка; 3,9 - упорные кольца; 4 - нижний поршень; 5 - пружина клапана; 6 - седло выпускного клапана; 7 - ступенчатый поршень; 8, 15 - кольцевые пружины; 10 - верхняя крышка; 11 - защитный колпачок; 12 - пружина мембраны; 13 - тарелка пружины; 14 - мембрана; 16 - опора; 17 - толкатель; 18 - выпускной клапан; 19 - впускной клапан; 20 - корпус; 21 - пружина; 22 - регулировочный винт; 23 - контргайка; А - следящая камера; В - рабочая камера; С - полость; I - ввод от ресивера; II - вывод в соединительную магистраль; III - атмосферный вывод; IV - ввод от клапана управления тормозными системами прицепа с двухпроводным приводом

Клапан состоит из корпуса 20, верхней 10 и нижней 2 крышек, толкателя 17 с мембраной 14 и пружиной 12, опоры поршня 16, ступенчатого поршня 7,выпускного 18 и впускного 19 клапанов с пружиной 5, нижнего поршня с пружиной, регулировочного винта 22 с тарелкой пружины, уплотнительных и стопорных колец. При достижении давления в магистрали прицепа 500-520 кПа (5,0-5,2 кгс/см2) нижний поршень 4 под действием этого давления перемещается вниз, сжимая пружину 21, седло впускного клапана садится на клапан 19 и прекращает подачу сжатого воздуха в соединительную магистраль прицепа.

При снижении давления в соединительной магистрали прицепа ниже указанных пределов нижний поршень 4 под действием пружины 21перемещается вверх, и седло впускного клапана вновь отрывается от клапана, обеспечивая подпитку тормозного привода прицепа и поддержание в нем необходимого давления воздуха, исключающее подтормаживание прицепа при колебаниях давления воздуха в тормозном приводе автомобиля-тягача.

При торможении автомобиля сжатый воздух от тормозного крана подается к тормозным камерам и к клапану управления тормозными системами прицепа с двухпроводным приводом, от которого сжатый воздух подводится к вводу IV клапана управления тормозными системами прицепа с однопроводным приводом и заполняет полость С (рис.10,в), вызывая его срабатывание.

При этом выпускной клапан 18 отрывается от седла в толкателе, и воздух из соединительной магистрали прицепа через вывод II, полый толкатель 17 и отверстие в крышке (вывод III) выходит в атмосферу.

Падение давления в соединительной магистрали прицепа приводит к срабатыванию его воздухораспределителя, сжатый воздух из ресивера прицепа подается в тормозные камеры, которые включают в работу тормозные механизмы прицепа.

Соединительная головка типа А (рис.11) предназначена для установки на автомобили-тягачи и служит для соединения однопроводного пневмопривода прицепа, а также для автоматического закрытия соединительной магистрали тягача при самопроизвольном разъединении головок. Головка окрашена в черный цвет. Она состоит из корпуса 1 с крышкой 5, в котором смонтирован обратный клапан 3 с уплотнителем 4 и пружиной 2.

Рис. 11 - Соединительная головка типа А

1 - корпус; 2 - пружина клапана; 3 - клапан обратный; 4 - уплотнитель; 5 - крышка; 6 - гайка кольцевая; 7 - шток; I - соединительная головка; II - соединение головок типа А и Б

При сцеплении автомобиля-тягача с прицепом у соединительной головки отводится в сторону защитная крышка 5. Головка типа А тягача стыкуется с головкой типа Б прицепа уплотнителями 4. При этом шток головки типа Бвходит в сферическую выемку клапана 3 головки типа А и отрывает клапан от уплотнителя 4. Затем головки поворачивают до тех пор, пока выступ одной головки не войдет в соответствующий паз другой головки. Фиксатор головки типа Б входит в паз направляющей головки типа А, предотвращая самопроизвольное разъединение головок. Герметизация стыка головок достигается сжатием уплотнителей 4. При разъединении тягача и прицепа соединительные головки поворачивают в обратном направлении до выхода выступа одной головки из паза другой, после чего головки разъединяют. При этом клапан 3 под действием пружины 2 прижимается к уплотнителю 4 и автоматически закрывает соединительную магистраль, предотвращая выход сжатого воздуха из пневмопривода автомобиля-тягача. После разъединения головку необходимо закрыть крышкой 5.

Автоматические соединительные головки (рис.12) предназначены для соединения магистралей двухпроводного пневмопривода тормозных систем прицепа и тягача. Соединительная головка питающей магистрали окрашена в красный цвет, другая (управляющей магистрали) - в голубой цвет; обе головки установлены на задней поперечине рамы тягача.

Головка включает в себя корпус с крышкой 3, в котором размещен клапан 2 с пружиной 1 и уплотнитель 4, выполняющий роль толкателя.

Рис. 12 - Автоматическая соединительная головка 1 - пружина клапана; 2 - клапан; 3 - крышка; 4 - уплотнитель; I - ввод; II - вывод в магистраль прицепа

При соединении головок следует отвести в сторону защитные крышки 3 обеих головок. Головки стыкуются уплотнителями, при этом уплотнитель 4 утапливается, сжимает подпружиненный клапан 2 и перепускает воздух от ввода I к выводу II и далее к тормозным системам прицепа. При соединении головки необходимо поворачивать до тех пор, пока выступ одной головки не войдет в соответствующий паз другой. Благодаря этому предотвращается самопроизвольное разъединение соединительных головок. Герметизация стыка двух головок обеспечивается сжатием уплотнителей 4.

Приразъединении тягача и прицепа соединительные головки поворачиваются в обратном направлении до выхода выступа вставки из паза, при этом клапан 2 под действием пружины 1 закрывает впускной канал, предотвращая выпуск воздуха из магистрали в окружающую среду. После разъединения соединительные головки закрываются крышками 3.

Page 2

По мере износа накладок ход рычага увеличивается, и эффективность тормоза может снизиться. Если рычаг устанавливается на 12-м зубе сектора, отрегулировать зазор между колодками и барабаном при помощи эксцентрика и звездочки, отсоединив тягу от рычага на раздаточной коробке.

Не допускается регулировать зазоры между колодками и барабаном изменением длины тяги , так как это приводит к выходу стояночного тормоза из строя.

Каждая колодка регулируется отдельно. Для регулирования зазора между правой колодкой и барабаном ослабить на пол-оборота стопорную гайку на эксцентриковом пальце со стороны щита и, поворачивая палец ключом снизу вверх, установить зазор 0,3...0,4 мм. Обратное вращение пальца приводит к неправильной регулировке и износу накладок. Зазор следует проверять щупом через щель в отражателе тормоза. Стопорную гайку затянуть.

Для регулировки зазора между левой колодкой и барабаном удалить заглушку. Через отверстие в щите тормоза, поворачивая отверткой звездочку снизу вверх, установить зазор 0,3...0,4 мм. Установить заглушку.

При крайнем нижнем положении рычага, выбрав свободный ход рычага на раздаточной коробке (перемещая вверх до заметного увеличения усилия), вращением вилки тяги необходимо обеспечить совпадение отверстий в вилке и рычаге. Установить палец и зашплинтовать его.

При усилии на рычаге в кабине 350...400 Н собачка рычага должна устанавливаться на 4...8 зубе сектора.При прохождении собачкой 2...4 зуба сектора должна загореться лампа сигнализатора включения стояночного тормоза. Регулирование момента включения осуществляется изменением количества прокладок под выключателем сигнализатора.

Общие меры техники безопасности

Основные понятия в области безопасности труда.

Под охраной труда понимают систему законодательных актов и соответствующих им мероприятий, направленных на сохранение здоровья и работоспособности трудящихся. Система организационных и технических мероприятий и средств, предотвращающих производственный травматизм, носит название техники безопасности.

Производственная санитария предусматривает мероприятия по правильному устройству и содержанию промышленных предприятий и оборудования в санитарном отношении (надежная вентиляция, надлежащее освещение, правильное расположение оборудования и др,)

Промышленная гигиена ставит своей целью создание наиболее здоровых и благоприятных в гигиеническом отношении условий труда, предотвращающих профессиональные заболевания работающих.

Основные положения по охране труда изложены в Кодексе законов о труде (КЗоТ).

Порядок проведения инструктажа. На автотранспортных предприятиях организация работ по технике безопасности и производственной санитарии возлагается на главного инженера. В цехах и на производственных участках ответственность за безопасность труда несут начальники цехов и мастера. Осуществление мероприятий по технике безопасности и производственной санитарии контролируют старший инженер (инженер) по технике безопасности и профсоюзные организации. Указания старшего инженера (инженера) по технике безопасности может отменить только руководитель предприятия или главный инженер.

Одними из основных мероприятий по обеспечению безопасности труда являются обязательный инструктаж вновь принимаемых на работу и периодический инструктаж всех работников предприятия. Инструктаж проводит главный инженер предприятия или старший инженер (инженер) по технике безопасности. Вновь принимаемых на работу знакомят с основными положениями по охране труда, правилами внутреннего распорядка, требованиями пожарной безопасности, особенностями работы предприятия, обязанностями работников по соблюдению правил безопасности труда и производственной санитарии, порядком передвижения по территории предприятия, средствами защиты работающих и способами оказания доврачебной помощи пострадавшим. Особое значение имеет инструктаж на рабочем месте с показом безопасных приемов работы.

Все работники независимо от производственного стажа и квалификации должны I раз в 6 мес проходить повторный инструктаж, а лица, выполняющие работы повышенной опасности (сварщики вулканизаторщики и др.),-- I раз в 3 мес. При повторном инструктаже подробно разбирают допущенные нарушения. Каждый инструктаж регистрируют в журнале.


Смотрите также