(499) 267-83-08

в рабочие дни с 11:00 до 19:00

(967) 289-13-39

ежедневно с 9:00 до 23:00

Записаться

Появилась возможность записаться он-лайн!

Этапы обучения

Теория и практическое обучение вождению на механике или автомате, индивидуальный подход, никаких дополнительных затрат.


Топливный элемент на водороде


Топливный элемент своими руками дома

Водородный топливный элемент компании Nissan

Содержание:

С каждым годом совершенствуется мобильная электроника, становясь все распространенее и доступнее: КПК, ноутбуки, мобильные и цифровые аппараты, фоторамки и пр. Все они все время пополняются новыми функциями, большими мониторами, беспроводной связью, более сильными процессорами, при этом, уменьшаясь в размерах. Технологии   питания, в отличие от полупроводниковой техники, семимильными шагами не идут.

Имеющихся батарей и аккумуляторов для питания  достижений индустрии становится недостаточно, поэтому  вопрос альтернативных источников стоит очень остро. Топливные элементы на сегодняшний день являются наиболее перспективным направлением. Принцип их работы открт был еще в 1839 году Уильямом Гроуом, который электричество генерировал изменив электролиз воды.

Что такое топливные элементы?

Видео: Документальный фильм, топливные элементы для транспорта: прошлое, настоящее, будущее

Топливные элементы интересны производителям автомобилей, интересуются ими и создатели космических кораблей. В 1965 году они даже были испытаны Америкой на запущенном в космос корабле «Джемини-5», а позже и на «Аполлонах». Миллионы долларов вкладываются в исследования топливных элементов и сегодня, когда  существуют проблемы, связанные с загрязнением окружающей среды, усиливающимися выбросомами парниковых газов, образующихся при сгорании органического топлива, запасы которого тоже не бесконечны.

Топливный элемент, часто называемый электрохимическим генератором, работает  нижеописанным образом.

Схема работы Топливного элемента на водороде

Являясь, как аккумуляторы и батарейки гальваническим элементом, но с тем отличием, что хранятся в нем активные вещества отдельно. На электроды они поступают по мере использования. На отрицательном электроде сгорает природное топливо или любое вещество из него полученное, которое может быть газообразным (водород, например, и окись углерода) или жидким, как спирты. На электроде положительном, как правило, реагирует кислород.

Но простой на вид принцип действия, в реальность воплотить не просто.

Топливный элемент своими руками

Видео: Топливный водородный элементсвоими руками

К сожалению у нас нет фотографий, как должен выглядить этот топливный элекмнт, надеямся на вашу фантазию.

Маломощный топливный элемент своими руками можно изготовить даже в условиях школьной лаборатории. Необходимо запастись старым противогазом,  несколькими кусками оргстекла, щелочью и  водным раствором этилового спирта (проще, водкой), которое будет служить для топливного элемента «горючим».

Стационарная энергоустановка на базе химического топливного элемента

Прежде всего, необходим корпус для топливного элемента, изготовить который лучше из оргстекла, толщиной не менее пяти миллиметров. Внутренние перегородки (внутри пять отсеков)  можно сделать немного тоньше – 3 см. Для склеивания оргстекла используют клей такого состава: в ста граммах хлороформа или дихлорэтана растворяют шесть грамм стружки из оргстекла (проводят работу под вытяжкой).

В наружной стенке теперь необходимо просверлить отверстие, в которое вставить нужно через резиновую пробку  сливную стеклянную трубочку диаметром 5-6 сантиметров.

Все знают, что в таблице Менделеева  в левом нижнем углу стоят наиболее активные металлы, а металлоиды высокой активности находятся в таблице в верхнем  правом углу, т.е. способность отдавать электроны, усиливается  сверху вниз и справа налево. Элементы, способные при определенных условиях проявлять себя как металлы или металлоиды, находятся в центре таблицы.

Теперь во второе и четвертое отделение насыпаем из противогаза активированный уголь (между первой перегородкой и второй, а также  третьей и четвертой), который выполнять будет роль электродов. Чтобы через отверстия уголь не высыпался его можно поместить в капроновую ткань (подойдут женские капроновые чулки). В

Топливо циркулировать будет в первой камере, в пятой должен быть поставщик кислорода – воздух. Между электродами будет находиться электролит, а для того, чтобы он не смог просочиться в воздушную камеру, нужно перед засыпкой  в четвертую камеру угля для воздушного электролита, пропитать его раствором парафина в бензине (соотношение 2 грамма парафина на пол стакана бензина). На слой угля положить нужно (слегка вдавив) медные пластинки, к которым припаяны провода. Через них ток отводиться будет от электродов.

Осталось только зарядить элемент. Для этого и нужна водка, которую разбавить с водой нужно в 1:1. Затем осторожно добавить триста-триста пятьдесят граммов едкого калия. Для электролита в 200 граммах воды растворяют 70 граммов едкого калия.

Топливный элемент готов к испытанию. Теперь нужно одновременно налить в первую камеру – топливо, а в третью – электролит. Присоединенный к электродам вольтметр должен показать от 07 вольт до 0,9. Чтобы обеспечить непрерывную работу элементу, нужно отводить отработавшее топливо (сливать в стакан) и подливать новое (через резиновую трубку). Скорость подачи регулируется сжиманием трубки. Так выглядит в лабораторных условиях работа топливного элемента, мощность которого, понятна мала.

Видео: Топливный элемент или вечная батарейка дома

Чтобы мощность была большей, ученые давно занимаются этой проблемой. На активной стали разработки находятся метанольный и этанольный топливные элементы. Но, к сожалению, пока на практику их выхода нет.

Почему топливный элемент выбран в качестве альтернативного источника питания

Работающая модель игрушки-электромобиля на водородном топливном элементе

Альтернативным источником питания выбран топливный элемент, поскольку конечным продуктом сгорания водорода в нем является вода. Проблема касается только в нахождении недорогого и эффективного способа получения водорода. Колоссальные средства, вложенные в  развитие генераторов водорода и топливных элементов, не могут не принести свои плоды, поэтому  технологический прорыв и реальное их использование в повседневной жизни, только вопрос времени.

Уже сегодня монстры автомобилестроения: «Дженерал Моторс», «Хонда», «Драймлер Коайслер», « Баллард», демонстрируют автобусы и авто, которые работают на топливных элементах, мощность которых достигает 50кВт. Но, проблемы, связанные с их безопасностью, надежностью, стоимостью  — еще не решены. Как говорилось уже, в отличие от традиционных  источников питания – аккумуляторов и батарей, в этом случае окислитель и горючее подаются извне, а топливный элемент лишь является посредником в происходящей реакции по сжиганию топлива и  превращению в электричество выделяющейся энергии. Протекает «сжигание» только в том случае, если элемент ток отдает в нагрузку, подобно дизельному электрогенератору, но без генератора и дизеля, а также без шума, дыма и перегрева. При этом, КПД намного выше, поскольку отсутствуют промежуточные механизмы.

Видео: Автомобиль на водородном топливном элементе

Большие надежды возлагаются на применение нанотехнологий и наноматериалов, которые помогут миниатюризировать топливные элементы, при этом увеличить их мощность. Появились сообщения, что созданы сверх-эффективные катализаторы, а  также конструкции топливных элементов, не имеющих мембран. В них вместе с окислителем подается в элемент топливо (метан, например). Интересны решения, где в качестве окислителя используется кислород, растворенного в воде воздуха, а в качестве топлива – органические примеси, скапливающиеся в загрязненных водах. Это, так называемые, биотопливные элементы.

Топливные элементы, по прогнозам специалистов, на массовый рынок могут выйти уже в ближайшие годы

motocarrello.ru

Водородные топливные элементы

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую.

Описание

Преимущества

Применение

Описание:

Водородные топливные элементы осуществляют превращение химической энергии топлива в электричество, минуя малоэффективные, идущие с большими потерями, процессы горения и превращения тепловой энергии в механическую. Водородный топливный элемент – это электрохимическое устройство в результате высокоэффективного «холодного» горения топлива непосредственно вырабатывает электроэнергию. Водород-воздушный топливный элемент с протон-обменной мембраной (PEMFC) является одной из наиболее перспективных технологий топливных элементов.

Протон-проводящая полимерная мембрана разделяет два электрода — анод и катод. Каждый электрод представляет собой угольную пластину (матрицу) с нанесённым катализатором. На катализаторе анода молекулярный водород диссоциирует и отдает электроны. Катионы водорода проводятся через мембрану к катоду, но электроны отдаются во внешнюю цепь, так как мембрана не пропускает электроны.

На катализаторе катода молекула кислорода соединяется с электроном (который подводится из электрической цепи) и пришедшим протоном и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Из водородных топливных элементов изготавливают мембранно-электродные блоки, являющиеся ключевым генерирующим элементом энергетической системы.

Преимущества водородных топливных элементов по сравнению с традиционными решениями:

– увеличенная удельная энергоемкость (500 ÷ 1000 Вт*ч/кг),

– расширенный диапазон эксплуатационных температур (-40 0С / +40 0С),

– отсутствие теплового пятна, шума и вибрации,

– надежность при холодном пуске,

– практически неограниченный срок хранения энергии (отсутствие саморазряда),

– возможность изменения энергоемкости системы за счет изменения количества топливных баллончиков, что обеспечивает почти неограниченную автономность,

– возможность обеспечить практически любую разумную энергоемкость системы за счет изменения емкости хранилища водорода,

– высокая энергоемкость,

– толерантность к примесям в водороде,

– длительный срок службы,

– экологичность и бесшумность работы.

– системы энергоснабжения для БПЛА,

– портативные зарядные устройства,

– источники бесперебойного питания,

– другие устройства.

карта сайта

водородный топливный элемент водородный топливный элемент купить водородно воздушные топливные элементы водородные топливные элементы автомобилей кислородно водородный топливный элемент водородный топливный элемент своими руками работа водородного топливного элемента водородная энергетика топливные элементы принцип работы водородного топливного элемента водородные топливные элементы принцип работы и устройство топливные водородные элементы ячейки водородный топливный элемент цена моделирование водородного топливного элемента водородно воздушные топливные элементы купить водородные топливные элементы развитие

comments powered by HyperComments

xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai

Автомобили на водородных топливных элементах против электромобилей

Узнаем про самые экологичные автомобили оборудованные водородными топливными элементами и электромоторами.

Летом 2018 года в России стартовали технологические конкурсы Up Great, организованные РВК, АСИ и фондом «Сколково». Задача конкурсов серии «Первый элемент» — разработать водородные топливные элементы для наземного и воздушного транспорта с уникальными характеристиками энергоемкости и энергоплотности. В чем преимущество этого вида топлива и могут ли автомобили на водороде соперничать на равных со своим главным конкурентом — электромобилями?

Экологичные автомобили

  • Прав ли Илон Маск?
  • Водород против лития
  • А это эффективно?
  • А сколько это стоит?
  • Вот вы какие, оттенки зеленого
  • Что выбрать покупателю?

В 2015 году Илон Маск назвал технологию получения энергии из водорода «очень глупой задумкой и опасной технологией». Произнося эти слова, создатель Tesla, вероятно, намекал на катастрофы, подобные катастрофе дирижабля «Гинденбург». Крушение воздухоплавательного аппарата произошло 6 мая 1937 года.

При посадке наполненная водородом оболочка дирижабля загорелась — погибло 35 человек. И хотя крушение «Гинденбурга» не самая страшная катастрофа в истории воздухоплавания, слово «водород» надолго стало для человечества синонимом опасности. Спустя почти 80 лет водородные технологии вернулись в мир транспорта. На этот раз — в виде топлива для автомобилей.

Прав ли Илон Маск?

Словосочетание «водородный автомобиль» в современном мире имеет два значения. Существуют две концепции использования этого газа в качестве автомобильного топлива. Водородным автомобилем называют транспортное средство с двигателем внутреннего сгорания, в котором для движения используется энергия, выделяющаяся при сгорании водорода.

Сегодня это би-топливные автомобили, такие как BMW Hydrogen 7 и Mazda RX-8 hydrogen, работающие как на бензине, так и на водороде. Вторая концепция — автомобили на водородных топливных элементах.

Этот вид транспортного средства, по сути, разновидность электромобиля. Тягу создает электромотор, а основное отличие в том, что роль источника питания играет не аккумулятор, а блок водородных топливных элементов, вырабатывающих электроэнергию в результате взаимодействия водорода и кислорода. Самое важное здесь, что реакция в топливных элементах происходит без процесса горения.

В смеси с воздухом или кислородом водород образует гремучий газ — название говорит само за себя. Гремучий газ самовоспламеняется при атмосферном давлении — именно это и стало причиной крушения «Гинденбурга». Кроме того, водород не обладает запахом, зато имеет свойство проникать сквозь другие материалы. Поэтому обращение с ним требует предельной осторожности.

В отличие от оболочки «Гинденбурга», взрывоопасный газ в системе автомобиля на топливных элементах или би-топливного автомобиля никогда не находится в условиях опасного атмосферного давления. Газ хранится в прочных и герметичных баках, непроницаемых для водорода и защищенных от внешних воздействий.

Так, в Toyota Mirai, первом в мире серийном автомобиле на водородных топливных элементах, газ хранится в двух баллонах высокого давления (700 бар) из углепластика с трехслойной структурой емкостью 60 и 62,4 литра. По заявлению производителя, разрушение баллонов невозможно даже в случае ДТП. Утечка газа вне бака также маловероятна — автоматика отключит подачу при любом изменении давления в системе. BMW и немецкая экспертная организация TÜV Süddeutschland (TUV) проводили испытания системы хранения водорода BMW Hydrogen 7.

Бак с газом пытались разрушить под высоким давлением, нагревали до температуры 1000 °C в течение 70 минут, подвергали механической деформации и ударным нагрузкам. Водород так и не взорвался.

Водород против лития

Серийные электромобили, в которых для движения используется энергия, накопленная в аккумуляторах, появились задолго до 2013 года, когда Toyota представила концепт Mirai. Силовая установка электромобиля — это тяговый электродвигатель, который приводит в движение ведущие колеса.

Для питания электродвигателя используется ТАБ — тяговая аккумуляторная батарея. Электромобиль прост, а потому его ценность для потребителя потенциально очень велика. Однако превращению электромобилей в самый массовый вид транспорта мешает отсутствие революционных технологических прорывов в развитии аккумуляторных батарей.

Вернее, один важный прорыв все-таки произошел: с появлением литий-ионных аккумуляторов, имеющих более высокую емкость при небольшом весе  в сравнении с традиционными никель-металл-гидридными и совсем уже архаичными свинцовыми аккумуляторами. После этого в развитии аккумуляторных технологий наблюдается лишь стабильное поступательное движение. Производители постоянно предлагают решения, позволяющие повысить емкость литий-ионных батарей.

Так, российская технологическая компания Drive Electro разработала на основе самых прогрессивных литий-титанатных (LTO) аккумуляторных ячеек батареи для пассажирского транспорта. На подзарядку литий-титанатных батарей второго поколения требуется всего от 6 до 20 минут, а это примерно в 20 раз меньше в сравнении со средним временем зарядки литий-ионных аккумуляторов.

Кроме того, литий-титанатные батареи не подвержены воздействию экстремальных низких температур — их можно заряжать без дополнительного подогрева и эксплуатировать при температуре до –40 °С. Это позволяет говорить о круглогодичной эксплуатации электромобилей в российских условиях.

Что же касается долговечности, то, по заявлению производителя, аккумулятор выдерживает не менее 20 тысяч циклов полного заряда и разряда, что эквивалентно примерно 15 годам ежедневной эксплуатации.

Правда, следует сразу оговориться, что пока статистики, подтверждающей это заявление, нет. Компания устанавливает свои батареи только на электробусы, да и те начали курсировать по улицам Москвы только в сентябре 2017 года.

А это эффективно?

Министерство энергетики США опубликовало результаты исследования, в котором КПД автомобилей с двигателем внутреннего сгорания сравнивается с КПД автомобилей с электродвигателями. Согласно этому исследованию, только от 12 до 20% сгенерированной двигателем внутреннего сгорания энергии передается на колеса. Колес электромобиля достигает уже от 86 до 94% энергии.

Максимальная скорость электробуса КАМАЗ-6282, оснащенного литий-титанатными аккумуляторами Drive Electro, составляет 75 км/ч при максимальном запасе хода 70 км. Показатели, на первый взгляд, не кажутся впечатляющими, но стоит вспомнить, что полная масса электробуса около 19 тонн, при способности перевозить до 110 пассажиров. Существуют примеры установки аккумуляторов того же типа на пассажирские электромобили.

Так, литий-титанатными аккумуляторами оснащены электромобили Mitsubishi i-MiEV для рынка Японии и электромобили Honda Fit EV. Максимальный пробег Honda Fit EV составляет 225 км. Это более чем в два раза меньше в сравнении с запасом хода в 500 километров Tesla Model 3 с литий-ионной батареей. Однако при сравнении следует учитывать емкость батарейного блока — 20 кВт•ч у Honda и более 80 кВт•ч у Tesla Model 3 с батареей увеличенной емкости.

Гибридная установка на водородных топливных элементах Toyota Mirai обладает максимальным КПД преобразования водорода в электрический ток, равным 83%. Максимальная мощность установки — 114 кВт. Автомобиль оснащен синхронным электродвигателем переменного тока. Его максимальная мощность составляет 113 кВт, или 154 лошадиные силы.

В два топливных бака Mirai можно единовременно заправить 122,4 литра или пять килограммов водорода. Максимальная дальность поездки на одной заправке при этом составит 650 километров. Для полной заправки баков необходимо три минуты.

А сколько это стоит?

Говоря об эффективности, невозможно пройти мимо стоимости энергии и самих автомобилей. Самой большой выбор автомобилей на водородных топливных элементах сегодня доступен в США. Кроссовер Hyundai Tucson Fuel Cell можно приобрести только в лизинг на 36 месяцев с первоначальным взносом в 2999 долларов и ежемесячной платой в 499 долларов.

Тойота Mirai стоит 57 500 долларов, однако компания предлагает выгодные арендные соглашения покупателям из Калифорнии, где сегодня действует самая развитая инфраструктура заправочных станций. Цены на Honda Clarity Fuel Cell начинаются от 34 290 долларов. Покупатель автомобиля на топливных элементах в США получает назад часть денег от государства в качестве поощрения за участие в развитии «зеленой» мобильности.

Например, в случае покупки Clarity Fuel Cell выплата составит 7500 долларов. Помимо перечисленных в США продаются и такие модели, как Mercedes-Benz F-Cell или Hyundai Nexo. В Британии есть собственный бренд — Riversimple Rasa. Запуск в серию автомобилей на водородных топливных элементах планируют практически все крупнейшие автопроизводители — от французского Renault до General Motors и китайского FAW.

Количество брендов, предлагающих электромобили на глобальном рынке, исчисляется десятками. На российском рынке на данный момент официально представлено менее 10 моделей, среди которых Nissan Leaf 2, Tesla Model 3, BMW i3s, Smart Fortwo Electric Drive и другие. Самый дорогой — Tesla Model X стоимостью не менее 9 миллионов рублей. Самый дешевый — Renault Twizy за 949 тысяч рублей.

Коммерческие станции подзарядки для электромобилей взимают плату не за электроэнергию, а за время подключения. Стоимость составляет от 10 до 15 рублей за минуту. При силе тока до 125A и напряжении 550В аккумулятор Tesla Model 3 будет полностью заряжен примерно за 50 минут. При стоимости минуты 10 рублей за полный цикл придется заплатить 500 рублей. С учетом среднего запаса хода в 320 километров стоимость одного километра составит 1,56 рубля.

Так выглядит сборная аккумуляторная батарея в электромобиле  

Поскольку в России нет инфраструктуры водородных заправочных станций, о цене топлива для водородных автомобилей можно судить лишь по рынкам других стран. Так, в Германии 1 килограмм водорода стоит 9,5 евро, и заправка 4,7 кг (средний объем топливного бака) обойдется примерно в 45 евро. При запасе хода в 600 км стоимость одного километра составит примерно 0,75 евро.

И для сравнения: в России стоимость 1 километра, пройденного на автомобиле, потребляющем 10 литров бензина с октановым числом 92 на 100 км, сегодня составляет примерно 4,3 рубля.

Вот вы какие, оттенки зеленого

Вместо угарного и углекислого газа из выхлопной трубы Toyota Mirai выходит обыкновенный водяной пар. В результате реакции холодного горения образуется обыкновенная вода, а поскольку в процессе выделяется много энергии, вода превращается в пар, который и является единственным «выхлопом» автомобиля на водородных топливных элементах. Вредных выбросов в атмосферу нет — совсем нет. Да и воды получается немного — согласно данным теста, выделение жидкости на 1 километр пробега составляет примерно 70 миллилитров.

Ситуация с экологическими характеристиками электромобилей идентична. Вредных выбросов и углекислого газа они не производят, однако, в отличие от автомобилей на водородных топливных элементах, электричества сами не генерируют. По этой причине в мире не прекращаются споры о том, действительно ли электромобили стоит считать «зелеными».

Причина в том, что более 60% от общего объема выработанной электроэнергии на планете генерируют электростанции, потребляющие ископаемые виды топлива. Естественно, при работе этих энергетических комплексов в атмосферу попадают вредные вещества, которые косвенно можно считать «выхлопом» электромобилей.

Доля выработки гидроэлектростанций, по данным Международного энергетического агентства (IEA) за 2011 год, составляла немногим более 16%, доля АЭС — около 13,5% и лишь 3,3% от общей выработки — это энергия из возобновляемых источников. Таким образом, реальная «экологичность» электромобиля будет расти по мере развития альтернативной энергетики.

Что выбрать покупателю?

Ответ на этот вопрос зависит на сегодняшний день от страны, в которой вы живете. Электромобили и автомобили на водородных топливных элементах совершенно бесполезны без инфраструктуры. По данным h3stations.org, в Германии в 2017 году были введены в эксплуатацию 24 общественные заправочные водородные станции. В США действует 40 станций, в Японии — 91. Всего в 2017 году было открыто 64 новые станции по всему миру. В России водородных станций пока вообще нет.

Ситуация с пунктами подзарядки электромобилей в России гораздо более благоприятна. В Москве действует 281 зарядочная станция и еще 58 работают в Подмосковье. В Санкт-Петербурге — 45, 136 — на острове Русский во Владивостоке, 23 — в Ставрополе, 14 — в Казани, 2 — в Красноярске, 1 станция — в Кемерово. Однако и по этому параметру Россия все еще сильно отстает от других стран. Для сравнения: в Лондоне на конец 2016 года действовало 11 736 зарядных станций для электромобилей.

Если абстрагироваться от высокой стоимости транспортных средств и состояния инфраструктуры, становится ясно: электромобили и автомобили на водородных топливных элементах — не конкуренты. У каждого из них своя ниша. Электромобили больше подходят для перемещения в пределах города, в то время как средний запас хода в 600 километров Toyota Mirai позволяет использовать ее для путешествий.

Литий-ионные аккумуляторы электромобилей теряют часть емкости при падении температуры — следовательно, автомобили на топливных элементах больше подходят для регионов с холодным климатом. И пока не существует технологических предпосылок, которые позволили бы говорить о том, что эти особенности удастся преодолеть в будущем. Ясно одно: будущее точно за одним из этих двух новых видов транспорта. опубликовано econet.ru  

Подписывайтесь на наш канал Яндекс Дзен!

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Химия и ток

В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

Химия как источник электричества

Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

Схема гальванического элемента

Wikimedia commons

Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким — это может быть и полимерный, и керамический материал.

Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.

Пальчиковые щелочные батарейки

Возможность перезарядки

Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора — источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.

Автомобильный свинцово-кислотный аккумулятор

На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.

Литий-ионный аккумулятор для мобильного телефона

Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают модифицировать материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые блокируют образование взрывоопасных структур, и компоненты, подавляющие возгорание на ранних стадиях.

Твердый электролит

В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы — в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H+, ионы лития Li+ или ионы кислорода O2-.

Водородные топливные элементы

Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

Наиболее подходящее вещество такого типа — газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2h3 + O2 → 2h3O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство — совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.

Принципиальная схема работы водородного топливного элемента

econet.ru

Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду — окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.

Водородный топливный элемент Toyota

Joseph Brent / flickr

Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O2–, как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.

Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

Эффективность топливных элементов

Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых предлагают использовать, например, графеновые мембраны.

В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.

Альтернативные электрохимические накопители

Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) — устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов — высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых современных разработках.

* * *

Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками. Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов — «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии». Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых — топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.

Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике. Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

Александр Дубов

nplus1.ru


Смотрите также