(499) 267-83-08

в рабочие дни с 11:00 до 19:00

(967) 289-13-39

ежедневно с 9:00 до 23:00

Записаться

Появилась возможность записаться он-лайн!

Этапы обучения

Теория и практическое обучение вождению на механике или автомате, индивидуальный подход, никаких дополнительных затрат.


Моторный тормоз принцип работы


Назначение и виды вспомогательной тормозной системы

Одной из систем, входящих в тормозное управление автомобиля, является вспомогательная тормозная система. Она работает вне зависимости от других тормозных систем и служит для поддержания постоянной скорости на затяжных спусках. Главная задача вспомогательной тормозной системы – разгрузка рабочей тормозной системы с целью снижения ее износа и перегрева во время длительного торможения. Применяется данная система в основном на коммерческих автомобилях.

Основное назначение системы

Вспомогательная тормозная система

Постепенно разгоняясь при движении на спусках, автомобиль может набрать достаточно высокую скорость, что может быть небезопасно для дальнейшего движения. Водитель вынужден постоянно контролировать скорость за счет использования рабочей тормозной системы. Такие циклы многократного притормаживания приводят к быстрому износу тормозных накладок и шин, а также увеличению температурного режима работы тормозного механизма.

В результате коэффициент трения накладок о тормозной барабан или диск снижается, что приводит к снижению эффективности всего тормозного механизма. А следовательно увеличивается тормозной путь автомобиля.

Для обеспечения длительного движения на спуске с небольшой фиксированной скоростью и без перегрева тормозных механизмов используется вспомогательная тормозная система. Она не может снизить скорость машины до нулевого значения. Это делает рабочая тормозная система, которая в «холодном» состоянии готова с наибольшей эффективностью выполнить свою задачу в нужный момент.

Виды и устройство вспомогательной тормозной системы

Вспомогательная тормозная система может быть представлена в виде следующих вариантов:

  • моторный или горный тормоз;
  • гидравлический тормоз-замедлитель;
  • электрический тормоз-замедлитель.

Моторный тормоз

Заслонка горного тормоза

Моторный тормоз (он же «горный») представляет собой специальную воздушную заслонку, установленную в выпускной системе двигателя автомобиля.  Также в его состав входят дополнительные механизмы ограничения подачи топлива и поворота заслонки, вызывающие дополнительное сопротивление.

При торможении водитель заслонку переводит в закрытое положение, а топливный насос высокого давления — в положение ограниченной подачи топлива в двигатель. Выпуск воздуха из цилиндров через выпускную систему становится невозможным. Двигатель глушится, но вращение коленчатого вала не прекращается.

В процессе выталкивания воздуха через выпускные отверстия поршень испытывает сопротивление, за счет чего замедляется вращение коленчатого вала. Таким образом тормозной момент передается на трансмиссию и далее к ведущим колесам автомобиля.

Гидравлический тормоз-замедлитель

Устройство гидравлического тормоза-замедлителя представляет собой:

  • корпус;
  • два лопастных колеса.
Гидравлический тормоз-замедлитель

Лопастные колеса установлены в отдельном корпусе друг напротив друга на небольшом расстоянии. Между собой они жестко не связаны. Одно колесо, соединенное с корпусом тормоза, установлено неподвижно. Второе устанавливается на вале трансмиссии (например, карданном) и вращается вместе с ним. Корпус наполняется маслом для создания сопротивления вращению вала. Принцип работы данного устройства напоминает гидромуфту, только здесь крутящий момент не передается, а наоборот рассеивается, переходя в тепло.

Если гидравлический тормоз-замедлитель устанавливается перед коробкой передач, то он может обеспечить несколько стадий интенсивности торможения. Чем ниже передача, тем, соответственно, эффективнее торможение.

Электрический тормоз-замедлитель

Аналогично функционирует электрический тормоз-замедлитель, который состоит из:

Электрический тормоз-замедлитель

Данный тип тормоза-замедлителя на автомобиле с механической  трансмиссией расположен в отдельном корпусе. Ротор замедлителя соединен с карданным валом либо с любым другим валом трансмиссии, а неподвижные обмотки статора закреплены в корпусе.

В результате подачи напряжения на обмотки статора появляется магнитное силовое поле, которое препятствует свободному вращению ротора. Возникающий тормозной момент,подобно гидрозамедлителю, подводится к ведущим колесам транспортного средства через трансмиссию.

На прицепах и полуприцепах при необходимости также может устанавливаться тормоз-замедлитель как электрического, так и гидравлического типа. На этот случай одна из осей должна быть выполнена с полуосями, между которыми и будет установлен замедлитель.

Подведем итог

Вспомогательная тормозная система необходима для поддержания постоянной скорости при движении автомобиля на затяжных спусках. Это снижает нагрузку на тормозные механизмы, увеличивая их срок службы.

(1 оценок, среднее: 5,00 из 5) Загрузка...

techautoport.ru

Назначение и устройство моторного тормоза-замедлителя

содержание   ..  70  71  72  73  74 

53.

Назначение и устройство моторного тормоза-замедлителя

            Моторный тормоз-замедлитель служит для перекрытия выпускного трубопровода с целью перевода двигателя на режим торможения. Он устанавливается в приемных трубах глушителя. На рис. 10.30 представлен моторный тормоз грузовых автомобилей ЗИЛ, который устанавливается перед глушителем. Корпус 2 тормоза прикреплен к фланцу патрубка 8. В корпусе размещена заслонка 9 с валом 3. На конце вала закреплен рычаг 4, соединенный со штоком 5 пневмоцилиндра 6, установленного на кронштейне 7, который прикреплен к фланцу патрубка

Рис. 10.30. Моторный тормоз-замедлитель грузовых автомобилей ЗИЛ:

1 — труба; 2 — корпус; 3 — вал; 4 — рычаг; 5 — шток; 6 — пневмоцилиндр; 7 — кронштейн; 8 — патрубок; 9 — заслонка

При движении автомобиля при выключенном моторном тормозе заслонка располагается вдоль потока отработавших газов, поступающих в корпус через приемные трубы 1, не препятствуя их выходу из выпускного трубопровода двигателя. При включении моторного тормоза под действием сжатого воздуха, поступившего в пневмоцилиндр 6, выдвигается шток 5, который поворачивает рычаг 4.

Рычаг поворачивает заслонку 9 на 90°. Заслонка перекрывает выход отработавших газов и создает противодавление, которое увеличивает сопротивление перемещению поршней в цилиндрах двигателя. Это приводит к уменьшению частоты вращения коленчатого вала, возрастанию сопротивления движению и замедлению автомобиля. При включении моторного тормоза одновременно с помощью другого пневмоцилиндра отключается подача топлива в цилиндры двигателя, который начинает работать на компрессорном режиме.

54. Антиблокировочные системы (АБС)

            Назначение и типы. Антиблокировочная система (АБС) служит для устранения блокировки колес автомобиля при торможении. Система автоматически регулирует тормозной момент и обеспечивает одновременное торможение всех колес автомобиля. Она также обеспечивает оптимальную эффективность торможения (минимальный тормозной путь) и повышает устойчивость автомобиля.

            Наибольший эффект от применения АБС получается на скользкой дороге, когда тормозной путь автомобиля уменьшается на 10... 15 %. На сухой асфальтобетонной дороге такого сокращения тормозного пути может и не быть.

            Существуют различные типы антиблокировочных систем по способу регулирования тормозного момента. Наиболее эффективными среди них являются АБС, регулирующие тормозной момент в зависимости от проскальзывания колес. Эти системы обеспечивают такое проскальзывание колес, при котором их сцепление с дорогой будет максимальным.

АБС сложны и различны по конструкции, дорогостоящи и требуют применения электроники. Наиболее просты механические и электромеханические АБС. Независимо от конструкции АБС включают в себя следующие элементы:

            •датчики — выдают информацию об угловой скорости колес автомобиля, давлении (жидкости, сжатого воздуха) в тормозном приводе, замедлении автомобиля и др.;

            •блок управления — обрабатывает информацию датчиков и дает команду исполнительным механизмам;

            •исполнительные механизмы (модуляторы давления) — снижают, повышают или поддерживают постоянное давление в тормозном приводе.

            Процесс регулирования торможения колес с помощью АБС включает несколько фаз и протекает циклически. Эффективность торможения с АБС зависит от схемы установки ее элементов на автомобиле. Наиболее эффективна АБС с отдельным регулированием колес автомобиля (рис. 10.31, а), когда на каждом колесе установлен отдельный датчик 2 угловых скоростей, а в тормозном приводе к колесу имеются отдельные модулятор 3 давления и блок управления 1.

Рис. 10.31. Схемы установки АБС на автомобиле: 1 — блок управления; 2 — датчик; 3 — модулятор

Однако такая схема установки АБС наиболее сложна и дорогостояща. Более простая схема установки элементов АБС показана на рис. 10.31, б.

В этой схеме используются один датчик 2 угловой скорости, установленный на валу карданной передачи, один модулятор 3 давления и один блок 1 управления. Схема установки элементов АБС, показанная на рис. 10.31, б, имеет чувствительность ниже, чем схема, показанная на рис. 10.31, а, и обеспечивает меньшую эффективность торможения автомобиля.

            Конструкция тормозных приводов с АБС. Схема двухконтурного гидравлического тормозного привода высокого давления с АБС показана на рис. 10.32, а. АБС регулирует торможение всех колес автомобиля и включает в себя четыре датчика 1 угловой скорости колес, два модулятора 3 давления тормозной жидкости и два электронных блока 2 управления. В гидроприводе установ­лены два независимых гидроаккумулятора 4, давление в которых поддерживается в пределах 14... 15 МПа, и тормозная жидкость в них нагнетается насосом 7высокого давления. Кроме того, в гидроприводе имеются сливной бачок 8, обратные клапаны 5 и двухсекционный клапан 6 управления, обеспечивающий пропорциональность между усилием на тормозной педали и давлением в тормозной системе.

Рис. 10.32. Двухконтурные тормозные приводы с АБС: а — гидравлический; 6— пневматический; 1 — датчик; 2— блок управления; 3 — модулятор; 4 — гидроаккумулятор; 5, 6 — клапаны; 7 — насос; 8 — бачок

При нажатии на тормозную педаль давление жидкости от гидроаккумуляторов передается к модуляторам 3, которые автоматически управляются электронными блоками 2, получающими ин­формацию от колесных датчиков 1.

Модуляторы работают по двухфазному циклу:

            •нарастание давления тормозной жидкости, поступающей в колесные тормозные цилиндры. Тормозной момент на колесах автомобиля возрастает;

сброс давления тормозной жидкости, поступление которой в колесные тормозные             •цилиндры прекращается, и она направляется в сливной бачок. Тормозной момент на колесах автомобиля уменьшается.

После этого блок управления дает команду на нарастание давления, и цикл повторяется.

На рис. 10.32, б представлена схема двухконтурного пневматического тормозного привода с АБС, которая регулирует торможение только задних колес автомобиля.             АБС включает в себя два датчика 1 угловой скорости колес, один модулятор 3 давления сжатого воздуха и один блок 2 управления. В пневмоприводе установлен также дополнительный воздушный баллон в связи с уве­личением расхода сжатого воздуха при установке АБС из-за многократного его впуска и выпуска при торможении автомобиля. Модулятор, включенный в пневмопривод и получающий команду от блока управления, регулирует давление сжатого воздуха в тормозных камерах задних колес автомобиля.

            Модулятор работает по трехфазному циклу:

            •нарастание давления сжатого воздуха, поступающего из воздушного баллона в тормозные камеры колес автомобиля. Тормозной момент на задних

колесах возрастает;

            •сброс давления воздуха, поступление которого в тормозные камеры прерывается, и он выходит наружу. Тормозной момент на колесах уменьшается;

            •поддержание давления сжатого воздуха в тормозных камерах на постоянном уровне. Тормозной момент на колесах поддержи­вается постоянным.

            Затем блок управления дает команду на нарастание давления, и цикл повторяется.

            Электронные АБС, имея сложную конструкцию и высокую стоимость, не всегда обеспечивают достаточную надежность в работе. Поэтому на автомобилях находят некоторое применение бо­лее простые и менее дорогие (почти в 5 раз дешевле) механичес­кие и электромеханические АБС, хотя они и имеют недостаточные чувствительность и быстродействие. Рассмотрим схемы электромеханической АБС и двухконтурного диагонального тормозного гидропривода переднеприводного легкового автомобиля малого класса с механической АБС.

Рис. 10.33. Схемы АБС электромеханической (а) и механической для диа­гонального тормозного гидропривода (б): 1–маховичок; 2–вал; 3–шестерня; 4– втулка; 5 — сухарь; 6, 7 — пружины; 8 — микровыключатель; 9 — рычаг; 10 — ось; 11 — толкатель; 12 — АБС; 13 —регулятор; 14 — привод АБС

Маховичок 1 (рис. 10.33, а) свободно установлен на втулке 4 и связан с ней сухарем 5, прижимаемым к втулке пружиной 6.

Втулка находится на валу 2, который приводится во вращение через шестерню 3 от шестерни, установленной на колесе автомобиля. В торцовую прорезь вала 2 входит плоский наконечник толкателя 11, заплечики которого опираются на спиральные скосы втулки 4. К торцу вала 2 под действием пружины 7 прижимается конец рычага 9 микровыключателя 8.

            При торможении с небольшим замедлением маховичок, втулка и вал вращаются вместе как одно целое. При торможении с большим замедлением маховичок 1 продолжает вращаться некоторое время с прежней угловой скоростью. Вследствие этого происходит поворот маховичка с втулкой 4 относительно вала 2. При этом толкатель 11 своими заплечиками скользит по стальным скосам втулки 4 и перемещается в осевом направлении. Толкатель, упираясь в конец рычага 9, поворачивает его на оси 10, вследствие чего замыкаются контакты микровыключателя 8 электромагнитного клапана. Клапан прерывает связь колесного цилиндра с тормозным приводом и сообщает его с линией слива.

            Тормозной момент на колесе уменьшается, колесо получает ускорение, а маховичок совершает угловое перемещение в обратном направлении. Толкатель 11 возвращается в исходное положение пружиной 7, колесный цилиндр соединяется с тормозным приводом, и цикл повторяется.

            Установка механической АБС на переднеприводном легковом автомобиле малого класса с диагональным двухконтурным гидравлическим тормозным приводом представлена на рис. 10.33, б. Привод механических АБС производится ременными передачами от ведущих валов передних колес. При этом в гидравлическом тормозном приводе колес устанавливаются регуляторы 13 тормозных сил.

            Активные средства безопасности. Кроме АВS на современных автомобилях устанавливаются и другие активные средства безопасности    Активные средства безопасности включают: антиблокировочную систему тормозов (ABS); антипробуксовочную систему (ASR); систему распределения тормозных усилий (EBD); систему блокировки межосевого дифференциала (EDL); электронная система контроля тяги для спуска со скользких и крутых уклонов (HDC , а также DAC и DDS); система предотвращения откат машины при подъеме в гору (HHC); система круиз-контроля, используемая для поддержания заданного скоростного режима автомобиля и контроля безопасной дистанции (ACC); прогнозирующая система торможения, которая работает совместно с адаптивным круиз-контролем (PBA); система курсовой устойчивости (ESP).

содержание   ..  70  71  72  73  74 

zinref.ru

Необычные тормоза: Тормоз-замедлитель, Ретардер, Интардер и Горный тормоз

 Транспортное средство при движении под уклон начинает постепенно разгоняться, достигая скорости, опасной с точки зрения водителя для безопасного движения. Водитель притормаживает, используя рабочую тормозную систему, снижая скорость до безопасной. Через некоторое время автомобиль вновь разгоняется и цикл притормаживания повторяется.

За путь движения с перевала длиной 5–20 км циклы притормаживания рабочей системой многократно повторяются. Это сопровождается износом шин, тормозных накладок и — самое главное — увеличением температуры тормозных механизмов, в первую очередь тормозных накладок. При разогреве накладок тормозных механизмов снижается коэффициент трения накладки о тормозной барабан, а следовательно, и тормозная эффективность тормозного механизма. В результате эффективность торможения автомобиля в начале спуска с горы и в конце, при прочих равных условиях, совершенно различная. Резкое ухудшение тормозных свойств автомобиля с горячими тормозными механизмами может привести к дорожно-транспортному происшествию с тяжелыми последствиями.

 Поэтому была разработана для тяжелых автомобилей и автопоездов такая тормозная система, которая обеспечивает длительное движение на спуске с небольшой постоянной скоростью без использования (и разогрева) механизмов рабочей тормозной системы. Последние должны оставаться в холодном состоянии и готовности выполнить в любой момент торможение с максимальной эффективностью. Такой системой является вспомогательная (второе название — износостойкая) тормозная система. Вспомогательная система не может снизить скорость автомобиля до нуля.

 По нормативным документам эффективность вспомогательной тормозной системы считается достаточной, если на уклоне в 7 % длиной 7 км скорость автомобиля поддерживается на уровне (30±5) км/ч.

Конструктивно вспомогательная тормозная система выполняется сейчас тремя способами: моторный тормоз, гидравлический тормоз-замедлитель и электрический тормоз-замедлитель. Следует иметь в виду, что в качестве тормоза-замедлителя на каждом автомобиле можно использовать двигатель, работающий на режиме холостого хода (так называемое торможение двигателем). Тормозной момент, создаваемый в этом случае двигателем, увеличивается при включении низших передач в коробке. Однако тормозной момент, развиваемый двигателем, работающим на холостых оборотах, небольшой и не обеспечивает необходимого замедления автомобиля большой массы.

 Более эффективный моторный тормоз (горный тормоз) представляет собой двигатель автомобиля, оборудованный дополнительными устройствами выключения подачи топлива и поворота заслонок в выпускном трубопроводе, создающих дополнительное сопротивление. При торможении водитель с помощью пневматического привода поворачивает заслонку в трубе глушителя в закрытое положение и перемещает рейку топливного насоса высокого давления в положение нулевой подачи топлива в двигатель. Вследствие этих действий двигатель автомобиля глушится (но вращение коленчатого вала не прекращается) и становится невозможным выпуск воздуха из цилиндров через выпускной тракт. В такте выпуска поршень стремится вытолкнуть воздух через выпускной трубопровод. При этом поршень испытывает сопротивление, многократно сжимая воздух. Следствием этого сопротивления перемещению поршня является замедление вращения коленчатого вала, и, следовательно,передача от него через трансмиссию тормозного момента к ведущим колесам автомобиля.

 Тормоз-замедлитель, ретардер (англ. retarder), — устройство, предназначенное для снижения скорости транспортного средства без задействования основной тормозной системы. Из большого количества схем чаще всего применяются электромагнитная и гидравлическая.

Преимущество гидравлического тормоза-замедлителя в стабильности по мере повышения температуры, в то время как электродинамический ретардер способен выдавать большее тормозное усилие.

 Теперь подробнее.

 Ретардеры делят по принципу и месту установки. По месту установки бывают первичные - которые установлены перед коробкой передач и вторичные  - за ней. Недостаток первичных в том, что при переключении передач происходит прерывание тормозного момента — что, не совсем есть хорошо. По принципу это соответственно:

 Гидродинамический ретардер по принципу работы очень похож на гидротрансформатор. Ретардер этого типа состоит из двух турбин, закрепленных на одной оси в общем корпусе. Ротор жестко связан с ведущими элементами трансмиссии, в то время как статор жестко соединен с корпусом. При движении машины ротор бесцельно гоняет воздух внутри ретардера, а при включении ретардера открывается клапан, через который сжатый воздух поступает в расширительный бак, и рабочая жидкость начинает поступать внутрь турбины. Ротор, движимый карданным валом, разгоняет масло, которое затем попадает в статор и тормозится, замедляя тем самым и ТС. Для вывода тепла чаще всего используется система охлаждения двигателя. Ретардеры могут оборудоваться собственным радиатором, если объем системы охлаждения автодома не рассчитан на появление дополнительных источников тепла. В новых моделях этих устройств система охлаждения ретардера объединена с системой охлаждения двигателя, что не только делает конструкцию проще и легче, но и позволяет достичь большей стабильности температурного режима работы. Недостатком гидродинамического ретардера является тот факт, что для достижения эффективного торможения ему необходимы достаточно высокие обороты.

 Электродинамический ретардер. Индукционные тормоза обеспечивают рассеивание энергии торможения за счет генерации токов Фуко. В состав тормоза-замедлителя как правило входят неподвижный статор и пара роторов, жестко соединенных с вращающим их приводным валом. Статор и роторы установлены коаксиально (что бы совпадали центральные оси) друг напротив друга и разделены небольшим воздушным зазором во избежание любого трения. Статор играет роль индуктора. Он состоит из последовательно соединенной пары электромагнитов, которые при непрерывном протекании электрического тока через обмотки статора создают электромагнитное поле, необходимое для возникновения токов Фуко в материале роторов. Роторы играют роль якоря. Они изготовлены из специального проводящего материала, и вихревые токи в роторах возникают только при вращении роторов с помощью приводного вала в магнитном поле, созданном статором. Токи Фуко по определению представляют собой токи, возникающие в массивном металлическом проводнике при его помещении в переменное магнитное поле. Токи Фуко циркулируют вокруг линий магнитного потока, и эти токи также называются вихревыми токами. Появление токов Фуко в материале ротора приводит к возникновению лапласовых сил, действующих в направлении, противоположном вращению ротора. В результате этого создается тормозящий момент, действующий на приводной вал и замедляющий таким образом движение автомобиля. Токи Фуко являются причиной интенсивного повышения температуры роторов, тепло от которых отводится в атмосферу посредством системы вентиляции. Несмотря на то, что электромагнитные ретардеры тяжелее гидродинамических, они имеют существенное преимущество — начинают эффективно работать практически с холостых оборотов. Слабая сторона – ресурс. Ретардеры такого типа, могут быть установлены непосредственно на вторичный вал трансмиссии или карданный вал. Фирма Telma предлагает еще один способ установки – «на ось» или «осевой ретардер», если переводить дословно – axle retarder. На самом деле он устанавливается на задний мост, и ротор крепиться на вал главной передачи. Принцип действия индукционных тормозов может показаться простым, но он основывается на сложных физических законах, как, например, электрическое сопротивление материалов, электромагнетизм и термодинамика.

 Акватардер - последняя разработка фирмы Voith. Он работает по тому же принципу что и гидродинамический, но вместо рабочего тела он использует не масло, а ОЖ двигателя. Акватардер установлен спереди двигателя и жестко закреплен с его коленчатым валом. Он относится к классу первичных ретардеров. Во время простоя работы (педаль тормоза не нажата) поток жидкости направляется помпой в систему охлаждения двигателя, минуя акватардер. Любое торможение активирует переключающий клапан, который направляет с помощью помпы весь поток охлаждающей жидкости в контур ретардера. Дальше эту функцию берет на себя сам ретардер, действуя как мощный насос. Чтобы с такой мощностью нагнетания получить желаемый тормозной момент, ретардер должен сопротивляться выходному сопротивлению. Этим дросселем является установленный на выходе акватардера пневматический регулировочный клапан, который служит бесступенчатым регулированием тормозного момента. При выключении ретардера оба клапана вентилируются и возвращаются в свое прежнее состояние. К недостаткам конструкции относиться малая мощность – около 1800 Нм, меньше, чем у ретардеров, работающих на масле (от 2000 до 3200 Нм). К достоинствам – малый вес, всего 32 кг, в сравнении с электромагнитным ретардером (в среднем от 100 кг) и простоту кострукции, так как нет необходимости в охлаждении.

 Интардер.Некоторые производители автобусов и среднетоннажных грузовиков европейской конструкторской школы (ZF Friedrichshafen AG) встраивают ретандер непосредственно в коробку передач, чем достигается экономия в весе, простота обслуживания а так же возможность охлаждения агрегата ОЖ двигателя. Наиболее распространенным способом является установка ретардера за коробкой передач. Он соединяется со вторичным валом не напрямую, а через пару шестерен с передаточным отношением примерно 1:2, поэтому скорость вращения ротора здесь в два раза выше (что позволяет улучшить характеристики тормозного момента на малых скоростях). Но собственно почему интардер вынесен отдельно от гидродинамического ретардер? Все дело в соединении шестерен в соотношении 1:2. Я думаю, что ZF запатентовала эту схему, и другие производители не идут по этому пути по причине вынужденных отчислений.

 Турборетандер на тяжелых тягачах Mercedes-Benz Actros SLT и Arocs SLT. Тянуть за собой 250 тонн очень тяжело. Но еще тяжелее начать движение с таким грузом. Гениальность турбо-ретардера в том, что помимо своей основной функции, выполняет роль гидромуфтыв начале движения. Преимуществом такого способа передачи усилия является быстрое и плавное силовое замыкание с высоким проскальзыванием, при полном крутящем моменте двигателя до 3000 Нм, без износа узлов. При нажатии на педаль акселератора, с помощью сжатого воздуха масло закачивается в сцепление с турбо-ретардером, это создает силовое замыкание между двигателем и первичным валом коробки передач. Количество масла регулируется нажатием на акселератор. Непосредственно после начала движения сцепление с турбо-ретардером замыкается, и масло удаляется из корпуса под воздействием центробежной силы, силовое замыкание между двигателем и коробкой передач производится стандартным способом с наивысшим КПД посредством фрикционного сцепления. В зависимости от нагрузки, подъема и выбранной программы движения тягач начинает движение на первой или второй передаче. Поскольку трогание с места с проскальзывающим сцеплением не требуется, на SLT оно выполнено как однодисковое сухое сцепление. (На Semi-SLT без сцепления с турбо-ретардером применяется двухдисковое сухое сцепление). При торможении турбинное колесо останавливается, и масло повторно закачивается в корпус, в этом случае сцепление с турбо-ретардером берет на себя функцию мощного первичного ретардера. Так же, водитель может маневрировать на очень малых скоростях, контролируя скорость педалью газа, как на обычной автоматической коробке передач с гидротрансформатором. Тронуться на подъеме с сотней тонн позади, тоже труда не составит.

 Горный (моторный) тормоз является самым простым, дешевым и универсальным средством торможения автомобиля. Работает только при включенной передаче и отпущенной педали акселератора. Суть работы горного тормоза сводится к отключению подачи топлива и частичному перекрытию выпускного тракта с целью создания противодавления на такте выпуска. Чаще всего представляет из себя заслонки с вакуумным сервоприводом. Конструктивно заслонка выполнена таким образом, чтобы обеспечить размер остаточного зазора достаточным для того, чтобы слишком большое противодавление не мешало нормальной работе выпускного клапана (точнее — исключалось его неконтролируемое открытие под воздействием отработавших газов из соседних цилиндров). Это одна из особенностей, ограничивающих максимальный тормозной момент такого тормоза-замедлителя.

 Jake Brake. Американские моторостроители пошли своим путем: там уже не первое десятилетие применяют Jake Brake — относительно простой тормоз Джакобса, встроенный в газораспределительный механизм. Принцип его работы основан на сбросе давления в цилиндре после такта сжатия при помощи штатного выпускного клапана. Для этого между толкателем и стержнем клапана устанавливается промежуточное звено — плунжер, изменяющий длину под действием управляющей гидравлической системы. Активная фаза торможения продолжается и на такте расширения, когда после закрытия клапана в цилиндре создается разряжение, поэтому такой тормоз называют декомпрессионным. Jake Brake применяется на грузовиках Freightliner (двигатели Cummins и Caterpillar) и DAF (голландцы не стали разрабатывать оригинальную конструкцию, а просто обратились за помощью к американцам). Свой тормоз «по мотивам Jake Brake», но с несколько иным принципом действия сконструировал и MAN. Баварцы пошли сразу двумя путями — использованием заслонки в выпускном коллекторе и модернизацией газораспределительного механизма: маленький плунжер, встроенный в коромысло, уходит вслед за клапаном вниз, а моторное масло (оно начинает поступать через отдельный канал) давит на плунжер и удерживает клапан в приоткрытом положении. В течение всех тактов, кроме впуска, выпускной клапан открыт — а значит, двигатель работает как обычный компрессор, засасывая воздух и нагнетая его в закрытую заслонкой выпускную систему. В итоге противодавление выхлопных газов возрастает настолько, что существенно тормозит поршень и в конечном итоге ведущие колеса.  

avtorazborka.kr.ua

Вспомогательная тормозная система

Эта система, обеспечивающая торможение двигателем, применяется на затяжных спусках при движении ТС с постоянной скоростью с целью разгрузки тормозов рабочей тормозной системы, которые при частом пользовании могут перегреваться. Вспомогательная тормозная система в виде моторного тормоза-замедлителя имеет заслонки в выпускных трубопроводах двигателя. За счет дросселирования продуктов сгорания в цилиндрах двигателя создается сопротивление вращению коленчатого вала. Например, вспомогательный тормоз автомобилей «Урал» с дизелем состоит из привода и двух исполнительных механизмов, установленных в трубопроводах системы выпуска отработавших газов из цилиндров.

Механизм вспомогательного тормоза включает в себя корпус 7 с фланцем для крепления к выпускному трубопроводу, заслонку 3, вал 4 и рычаг поворотный 2 вала заслонки. Когда тормоз не включен, заслонка расположена вдоль потока отработавших газов по оси приемных труб глушителя.

Привод управления вспомогательным тормозом выполнен пневматическим. Он состоит из крана управления, закрепленного на панели кабины, пневмоцилиндров и кнопки управления, расположенной около педали сцепления. В системе имеются три пневмоцилиндра, два из которых предназначены для управления заслонками выпускных трубопроводов, а один — для отключения подачи топлива.

Рис. Механизм вспомогательного тормоза: 1 — корпус; 2 — поворотный рычаг вала заслонки; 3 — заслонка; 4 — вал заслонки

При нажатии на кнопку крана управления сжатый воздух из пневмосистемы подается к двум пневмоцилиндрам, поршни которых перемещаются и при помощи штоков устанавливают заслонки 3 механизмов перпендикулярно потоку отработавших газов, создавая сопротивление их выпуску. Одновременно воздух подается от крана к пневмоцилиндру, расположенному на крышке топливного насоса высокого давления. Подача топлива прекращается, и двигатель работает в тормозном режиме, т.е. при работе вспомогательного тормоза цилиндры двигателя переключаются на работу в режиме компрессора: топливо не подается, а воздух поступает и сжимается при перемещении поршней. Двигатель поглощает часть энергии ТС, затрачивая ее на сжатие воздуха в цилиндрах. Воздух, поступающий в цилиндры, сжимается, а затем под действием поршней выталкивается в выпускной трубопровод, давление в котором в результате закрытия заслонок резко возрастает. Создаваемое противодавление не должно превышать 0,3 МПа, иначе сила, действующая на выпускные клапаны цилиндров двигателя, превысит усилие их прижатия к своим гнездам. Поскольку при работе тормоза подача топлива прекращается, его сгорания не происходит, а поршни перемещаются в цилиндрах под воздействием вращения колес автомобиля и передачи этого вращения через детали трансмиссии коленчатому валу.

ustroistvo-avtomobilya.ru


Смотрите также